御制数理精蕴

  设如有丹砂一两价值钱二万五千文问每钱一文该得丹砂几何
  法以丹砂一两为实列于下钱二万五千为法列于上因法之首位二大于实之首位一故将法退一位列之又因法之百位十位单位俱无数故各作○以存其位而实亦作五○位以补足法爰看实足法之四倍故书四于法上乃以得数之四与法之二五○○○相因得一○○○○○书于实下与实相减恰尽即得数为四丝也定位因法之末位○系单位故从实之首位一两数至法之单位相对之位为丝是知每钱一文得丹砂四丝也
  设如有银一千二百五十两买果赏人每果一枚价二厘五豪问买果若干
  法以一千二百五十两补五○位为实列于下【因法之末位是豪故补五○位与法相对葢命实为一千二百五十万豪也】二厘五豪为法列于上爰看实之一二五足法之五倍故书五于法上乃以得数之五与法之二五相因得一二五书于实下与实相减恰尽然实后尚有五○位故得数后亦添五○位为五十万也定位因法实俱至豪位止即命豪为单位爰从实之末位数至法之单位相对之位为十万是知得果为五十万枚也
  设如有物重三百八十四两问得斤数若干
  法以三百八十四两为实列于下每斤一十六两为法列于上爰看实之三八足法之二倍故书二于法上乃以得数之二与法之一六相因得三十二书于实下与实相减余六次取实数之四书于减余之后共为六四因足法之四倍故书四于上乃以得数之四与法之一六相因得六十四书于实下与实相减恰尽即得数为二十四斤也定位因法之两数为单位而与实之十位相对故知得数为二十四斤也
  又法名为斤称流法其法曰一退六二五【如一万两则为六百二十五斤一千两则为六十二斤半一百两则为六斤二分半皆以十递析退者退一位命之也】二一二五【如二万两则为一千二百五十斤二千两则为一百二十五斤二百两则为十二斤半不言退者对位命之也余仿此】三一八七五四二五五三一二五六三七五七四三七五八五九五六二五如三百八十四两则列于上先以三之一八七五通之爰将一对三之本位以下依次向后书之次以八之五通之将五对八之本位书之次以四之二五通之将二对四之本位书之五则列于次位三数书毕乃以加法并之得数为二十四斤定位因两之前一位为斤今得数之四在两之前一位故四即为斤位而又前一位则为十位是知得数为二十四斤也
  设如周天三百六十度分十二宫问每宫得若干度法以三百六十度为实列于下一十二宫为法列于上爰看实之三六足法之三倍故书三于法上乃以得数之三与法之一二相因得三六书于实下与实相减恰尽然实后尚有○位故得数后亦添一○位即得数为三十度也定位因法之二为单位而与实之十位相对故得数首位为十而每宫为三十度也
  设如一日之中得一千四百四十分以九十六刻分之问每刻得若干分
  法以一千四百四十分为实列于下以九十六刻为法列于上爰看实之一四四仅足法之一倍故书一于法上乃以得数之一与法之九六相因仍得九六书于实下与实相减余四八次取实之○位书于减余之后共为四八○因足法之五倍故书五于上乃以得数之五与法之九六相因得四八○书于实下与实相减恰尽即得数为一十五分也定位因法之六为单位而与实之十位相对故得数首位为十而每刻为一十五分也
  一位归除防法
  设如有银三十四万五千六百七十八两作二分分之问每分若干
  法以三十四万五千六百七十八两为实列于上视首位之三足二分之几何今足一倍故下书一一二除二余一乃移于下位为十【下位作防为志】并下位之四共为十四足二分之七倍故下书七二七除一十四恰尽次五足二分之二倍故下书二二二除四余一移于下位为十并下位之六共为十六足二分之八倍故下书八二八除一十六恰尽次七足二分之三倍故下书三二三除六余一移于下位为十并下位之八共为十八足二分之九倍故下书九二九除一十八恰尽定位因得数仍原数之位故知每分得一十七万二千八百三十九两也
  设如有银一十二万三千四百五十三两作九分分之问每分若干
  法以一十二万三千四百五十三两为实列于上因首位之一小于九分故移于下位为十并下位之二共为十二足九分之一倍故下书一一九除九余三移于下位为三十并下位之三共为三十三足九分之三倍故下书三三九除二十七余六移于下位为六十并下位之四共为六十四足九分之七倍故下书七七九除六十三余一移于下位为十并下位之五共为十五足九分之一倍故下书一一九除九余六移于下位为六十并下位之三共为六十三足九分之七倍故下书七七九除六十三恰尽定位因得数比原数退一位故知每分得一万三千七百一十七两也


  御制数理精蕴下编卷一
  钦定四库全书
  御制数理精蕴下编卷二
  首部二
  命分
  约分
  通分










  命分
  凡归除分至最细而可以恰尽无余者谓之无竒零数若分至最细而屡除不尽者谓之有竒零数其竒零若畧去之则不能复还原数此命分之所以立也其法命为分母分子分母者即除数也分子者即除不尽之数也凡不尽之数得分母中之几分者即命为几分之几是以命分之一法正所以济归除之所不逮也
  设如有银十一两命三人分之问每人得若干法以三人分银十一两每人得银三两仍余二两所余二两再以三人分之每人得六钱六分六厘六豪如是每得六而仍余二数不尽故立命分法以三人为分母所余二两为分子命为每人得三两又三分两之二葢将每两剖作三分其所余二两则共剖作六分三人分之每人得二分故命为三分两之二也如因三分两之二求知原银数则以三人与分子二分相乘得六分葢每人得二分则三人共得六分也以六分用分母三分归之得二两葢初分一两为三分故终收三分为一两也再加入三人所得整数共九两【一人三两三人共得九两】则得十一两以合原数也
  设如有银一百八十七两命十八人分之问每人得若干
  法以十八人分银一百八十七两每人得银十两仍余七两分之不尽则以十八人为分母所余七两为分子命为每人得一十两又十八分两之七葢将每两剖作十八分其所余七两则共剖作一百二十六分十八人分之每人得七分故命为十八分两之七也如因十八分两之七求知原银数则以十八人与分子七分相乘得一百二十六分葢每人得七分则十八人共得一百二十六分也以一百二十六分用分母十八分归之得七两葢初分一两为十八分故终收十八分为一两也再加入十八人所得整数共一百八十两【一人十两十八人共得一百八十两】则得一百八十七两以合原数也

  约分
  约分者以所命之分约之以就整分也葢命分是随其数之多寡全而纪之而约分则即其多寡之数从而约之以求简易焉其法以分子分母两数辗转相减务期减余两数相同是为度尽两数之一数乃以此数为一分以除分母得几分者即约分母为几分又除分子得几分者即约为分母几分中之几凡诸法中有带分者皆由约法而得故设例于此所以明带分之根也
  设如古厯歳实命为三百六十五日又一百分日之二十五今以法约之求相当最小数
  法置日分一百以余分二十五减之余七十五分再以二十五减之余五十分再以二十五减之亦余二十五分两数齐等即以相等之数二十五转除日分一百得四即为四分又以二十五除余分二十五得一即为一分乃百分日之二十五约为
  四分之        【凡约】              【分法以分母分】一是歳实共得三百六十五【葢将一日剖作四分而得其四分之一也】日又四分日之一也子相减必得相等之数然后用之葢因此数可以度尽分母又可以度尽分子故也今以相等之数二十五为一分则日分一百有四倍二十五故为四分而余分二十五又恰足一分之数故为一分一百与二十五之比即同于四与一之比是四与一即一百与二十五之相当最小数也凡分母分子辗转相减不得相等之数终减至于一是分母分子俱无一数可以度尽之数即不用约分用命分志之可也
  设如有银二百一十两命一百四十七人分之每人得银一两仍余六十三两不尽以法约之求相当最小数
  法置一百四十七人以余银六十三减之余八十四再以六十三减之余二十一又置六十三转以二十一减之【因减数大于原数又不得两数齐等故以二十一转减之】余四十二再以二十一减之亦余二十一则两数齐等即以相等之数二十一转除一百四十七人得七即为七分又以二十一除银六十三两得三即为三
  分乃一百四十七人分余银六十三两约为                     【也】七分之三是每人得银一两又七分两之三【葢将每两剖作七分而得其七分之三也】也此法以一百四十七人与六十三两辗转相减得相等之数二十一是二十一可以度尽一百四十七人又可以度尽六十三两故也既以二十一为一分则一百四十七有七倍二十一故为七分六十三有三倍二十一故为三分一百四十七与六十三之比即同于七与三之比是七与三即一百四十七与六十三之相当最小数









  通分
  凡竒零数目不以十递析者难以立算则用通分如斤通为两宫通为度度通为分之类是也又有整数而带零分者则必通之以从其类如化整为零收零作整之类是也或有零分而分母不同者则必通之以同其母如互乘之类是也通分之法立然后竒零数目得以归有余齐不足而带分之法皆根于此故为另设加减乘除之法以明其义焉
  加法
  凡竒零数相加两分母同者即并两分子为得数若相加之数大于母数则于所得数内减去母数为一整数纪其余为零数
  设如有九分丈之七【一丈分为九分而得其七分也】与九分丈之五【一丈分为九分而得其五分也】相加求总数
  法以九分之七与九分之五左右列之将两分子七与五相加得一十二因子数大于母数乃于一十二内减去母数九为一整数余三为零数即得整数一丈零九分丈之三为相加之数也此法因两分母同为九分而两分子亦同为九分中之零分故径并两零分之七与五得一十二又以母数九分收为一丈【葢初以一丈分为九分今满九分即收为一丈也】其所余三亦仍为九分中之三分故得一丈零九分丈之三为两零分之共数此分母相同之加法也【如以真数明之九分丈之七是将一丈分为九分得其九分中之七分一丈分为九分则每一分得一尺一寸一分一厘有余九分中之七分则为七尺七寸七分七厘有余也九分中之五分则为五尺五寸五分五厘有余也两数相加共得一丈三尺三寸三分三厘有余即一丈零九分丈之三也葢一尺一寸一分一厘有余既为九分中之一分则三尺三寸三分三厘有余即九分中之三分也如以九分除三分即得三尺三寸三分三厘不尽之数是九分与一丈之比即同于三分与三尺三寸三分有余之比也】
  凡竒零数相加两分母不同者则用互乘法以两分母相乘为共母数再以前分母乘后分子又以后分母乘前分子以所得两子数相加为共子数纪于共母数之下为共零数
  设如有三分丈之二【例亦等一丈分为三分而得其】与五分丈之三【二分也一丈分为五分而得其】相加求总数
  法以两分母三五相乘得一十五为共母数再以前分母三乘后分子三得九又以后分母五乘前分子二得十将两得数相加得十九为共子数因子数大于母数乃于十九内减去共母数十五为一整数余四为零数即得整数一丈零十五分丈之四为相加之数也此法用互乘者本为齐其分母也夫以两分母相乘得十五者乃以两分母俱变为十五分也【三分也因分母不同难以相加故变】以前分母三乘后分子三得九者乃以后分子变为十五分中之九也又以后分母五乘前分子二得十者是又以前分子亦变为十五分中之十也葢十五分之十与三分之二其比例等【为同等俱为五】而【倍比例】十五分之九与五分之三其比【俱为三倍比例】两分母既变为同等则两分子亦俱为同分母之子矣故相加如第一法此分母不同之加法也【如以真数明之三分丈之二既变为十五分丈之十则每一分为六寸六分六厘有余今得十分即六尺六寸六分六厘有余也又五分丈之三既变为十五分丈之九则每一分亦为六寸六分六厘有余今得九分即六尺也两数相加共得一丈二尺六寸六分六厘有余即一丈零十五分丈之四也葢六寸六分六厘有余即为十五分中之一分今二尺六寸六分六厘有余为四倍六寸六分六厘有余即十五分中之四分也如以十五分除四分即得二尺六寸六分不尽之数是十五分与一丈之比即同于四分与二尺六寸六分有余之比也】
  又或分母不同而可以加减之使同者则变而同之可省互乘
  设如有八分两之一与十二分两之三相加求总数法以十二分之三变为八分之二则与八分之一两分母相同故径并两分子二与一得三即八分两之三为相加之数也此法将十二分之三变为八分之二者乃分母分子各减三分之一也母数十二减三分之一余八子数三减三分之一余二葢十二分之三与八分之二其比例相等故变从简易如数有参
  【分】差者则当用下节之【如以真数明之八分两之一是将一两分为八分其一分即一钱二分五厘也又十二分两之三是将一两分为十二分其三分为二钱五分今变为八分两之二是将一两分为八分其二分亦为二钱五分也两数相加共得三钱七分五厘即八分两之三也葢一钱二分五厘为八分中之一分今三钱七分五厘即八分中之三分也如以八分除三分即得三钱七分五厘是八分与一两之比即同于三分与三钱七分五厘之比也】
  法设如有六分石之五与三分石之二相加求总数如依前法将六分之五折半为三分之二分半则两分母虽同而分子却有竒零若将三分之二加一倍作六分之四变少从多则与六分之五两分母相同乃径并两分子五与四得九因子数大于母数乃于九内减去母数六为一整数余三为零数即得整数一石零六石之三为相加之数也此法三分之二变为六分之四者乃分母分子各加一倍之比例也凡变分母分子或加或减务期所变之分数与原分数比例相同使其两分母同而两分子可并也此条与上条用加减虽各异而齐其分母以加之则同也【如以真数明之六分石之五是将一石分为六分则每一分得一斗六升六合六勺六撮六抄有余今得五分即八斗三升三合三勺三撮三抄有余也又三分石之二是将一石分为三分其二分为六斗六升六合六勺六撮六抄有余今变为六分石之四是将一石分为六分其四分亦为六斗六升六合六勺六撮六抄有余也两数相加共得一石四斗九升九合九勺九撮九抄有余收为五斗即一石零六分石之三也葢六分为一石则三分即五斗也】