- 首页
- 子藏
- 算法
- 御制数理精蕴
御制数理精蕴
凡子母数有三四种相加者其分母分子俱不同则用互乘以齐其分母按前法加之【三种者以第一数与第二数依前互乘法相加得数又与第三数依前互乘法相加四程者以第一数第二数互乘相加得数与第三数互乘相加得数复与第四数互乘相加】如两分母相同者即并其两分子而与所余之分母不同者用互乘以加之又或有两分母相乘后所得之数与所余之分母相同者则直以所得之分子与所余之分子相加为得数即不用互乘矣
设如有三分斤之一又四分斤之二又五分斤之三相加求总数
法以前两分子分母按互乘法相加得十二分斤之十【五种相加者俱仿此以两分母三与四相乘得十二为共母数以前分母三乘后分子二得六又以后分母四乘前分子一得四相加得一十为共子数】乃以十二分斤之十与第三子母分用互乘法相加得六十分斤之八十六【是为十二分斤之十以第三分母五与前两分母互乘所得之十二相乘得六十为共母数以前两分母所得十二乘第三分子三得三十六又以第三分母五乘前两分子所得十得五十相加得八十六为共子数是为】因子数大于母数乃于共子数八十六内减去共母数六十为一整数余二十六为零数即得一斤零六十分斤之二十六为总数也【六十分斤之八十六】凡子母分有四种【如以真数明之三分斤之一是将一斤分二十分丈之一为总数也为三分其一分即五两三钱三分三厘有余也四分斤之二是将一斤分为四分则每一分为四两今得二分即八两也五分斤之三是将一斤分为五分则每一分为三两二钱今得三分即九两六钱也三数相加共得二十二两九钱三分三厘有余内收十六两为一斤余六两九钱三分三厘有余即六十分斤之二十六也葢以十六两分为六十分每分得二钱六分六厘有余今六两九钱三分三厘有余有二十六倍二钱六分六】
设如有五分丈之三又四分丈之一又五分丈之一相加求总数
法因五分丈之三与五分丈之一两分母相同故直并其两分子三与一为五分丈之四再以五分丈之四与四分丈之一依互乘法相加得二十分丈之二十一【厘有余即为二十六分也以前分母五与后分母四相乘得二十为共母数以前分母五乘后分子一得五又以后分母四乘前分子四得十六相加得二十一】因子数大于母数乃于共子数二十一内减去共母数二十为一整数余一为零数【是为二十分丈之二十一】即得一丈零【如以真数明之其五分丈之三即六尺也其四分丈之一即二尺五寸也其五分丈之一即二尺也三数相加得一丈零五寸即一丈零二十分丈之一葢一丈分为二十分每分得五寸也】
设如有三分两之二又四分两之三又十二分两之四相加求总数
法以三分之二与四分之三用互乘法相加得十二分两之十七【以前分母三与后分母四相乘得十二为共母数以前分母三乘后分子三得九又以后分母四乘前分子二得八相加得十七是为十二分两之十七】此所得之十二分两之十七与第三分母相同即以前两分所得共子十七与后一分子四相加得二十一是为十二分两之二十一因子数大于母数乃于共子数二十一内减去共母数十二为一整数余九为零数即得一两零十二分两之九为总数也【如以真数明之其三分两之二即六钱六分六厘有余也其四分两之三即七钱五分也其十二分两之四即三钱三分三厘有余也三数相加得一两七钱四分九厘有余收作七钱五分即一两零十二分两之九葢十二分两之九即七钱五分也】
减法
凡竒零数相减两分母同者即将两分子相减为余数
设如有十一分丈之七减十一分丈之五求余数法以十一分丈之七与十一分丈之五左右列之将两分子五与七相减余二即得十一分丈之二为余数也葢因两分母同为十一分则两分子亦同为十一分中之零分故径将两分子相减余二亦仍为十一分中之二分是以定为
十一分丈之二此分母相同之减 【也】法【如以真数明之十一分丈之七是将一丈分为十一分则每一分得九寸零九厘零九丝有余其中之七分即六尺三寸六分三厘六豪三丝有余也其中之五分即四尺五寸四分五厘四豪五丝有余也相减余一尺八寸一分八厘一豪八丝有余即十一分中之二分也葢九寸零九厘零九丝有余为一分则一尺八寸一分八厘一豪八丝有余即为二分也如以十一分除二分亦得一尺八寸一分八厘一豪八丝不尽之数是十一分与一丈之比即同于二分与一尺八寸一分八厘一豪八丝有余之比也】
凡竒零数相减两分母不同者则用互乘法以两分母相乘为共母数再以前分母乘后分子又以后分母乘前分子以所得两子数相减为余数
设如有三分丈之二减五分丈之三求余数
法以两分母三五相乘得一十五为共母数再以前分母三乘后分子三得九又以后分母五乘前分子二得一十将所得两分子相减余一即得十五分丈之一为余数也此法用互乘齐其分母将三分丈之二变为十五分丈之十将五分丈之三变为十五分丈之九两分母既同为十五分故两分子十与九相减余一为十五分丈之一也此分母不同之减法也如两分母不同可以加减之使其相同者减之亦如加法中例故不重设【如以真数明之其三分丈之二即六尺六寸六分六厘有余也其五分丈之三即六尺也相减余六寸六分六厘有余即十五分丈之一也葢一丈分为十五分每一分得六寸六分六厘不尽也】
凡零数与整数相减者即以分子与分母相减为余数
设如有米一石内减七分石之五求余数
法以整数一石变为七分为分母与分子五相减余二即得七分石之二为余数也葢将一石分为七分而于此七分内减去五分则所余即七分石之二【五】此整数中减零数法【如以真数明之将一石分为七分则每一分得一斗四升二合八勺五撮七抄有余其五分即七斗一升四合二勺八撮五抄有余也与一石相减余二斗八升五合七勺一撮四抄有余即七分石之二也葢一斗四升二合八勺五撮七抄有余为一分则二斗八升五合七勺一撮四抄有余自为二分也】
也凡整数带零分相减者将两零分用互乘法变为同母然后减
之设如有银八两零五分两之四内减五两零七分两之三求余
数法以八两之零数五分之四与五两之零数七分之三用互乘法两分母七相乘得三十五为共母数再以五两之分母七乘八两之分子四得二十八为八两所变之子数又以八两之分母五乘五两之分子三得十五为五两所变之子数乃以八两五两二整数相减余三两以两子数二十八与十五相减余十三即得三两又三十五分两之十三为余数也葢既将两子数变为同母则八两者为八两零三十五分两之二十八五两者为五两零三十五分两之十五分母既同故以子数相减而得余数此整数带零分相减之法也【如以真数明之其八两零五分两之四即八两八钱也其五两零七分两之三即五两四钱二分八厘五豪七丝有余也相减余三两三钱七分一厘四豪二丝有余其三两为整数其三钱七分一厘四豪二丝有余即三十五分中之十三分也葢将一两分为三十五分则每一分得二分八厘五豪七丝有余其十三分即三钱七分一厘四豪二丝有余也】
凡子母数三四种相减者其分母分子俱不同则用互乘以齐其分母按前法减之如两分母相同者即将其两分子相减而与所余之分母不同者用互乘以减之又或有两分母相乘后所得之数与所余之分母相同者则直以所得之分子与所余之分子相减即得余数其理与加法同
设如有铜九斤零八分斤之七内减二斤零四分斤之一又减八分斤之三求余数
法以九斤内减去二斤余七斤为整数乃以八分斤之七与四分斤之一用互乘法将八分斤之七变为三十二分斤之二十八将四分斤之一变为三十二分斤之八两数相减余三十二分斤之二十又以三十二分斤之二十与第三零数八分斤之三用互乘法将三十二分斤之二十变为二百五十六分斤之一百六十将八分斤之三变为二百五十六分斤之九十六两数相减余二百五十六分斤之六十四合前整数共得七斤又二百五十六分斤之六十四为余数也如用约法则为七斤零四分斤之一葢二百五十六为四倍六十四今以六十四为一分则二百五十六自得四分也其余几种零分内有两分母相同或两分母乘出之数与余一分母相同俱照同分母之例减之故不再设或零分有四种五种者亦俱仿此此几种零分相减之法也【如以真数明之其九斤零八分斤之七即九斤十四两也内减二斤零四分斤之一是减去二斤四两又减去八分斤之三是又减去六两也余七斤零四两即七斤零四分斤之一也葢一斤分为四分则每一分得四两今七斤零四两故谓七斤零四分斤之一也】
乘法
零分与零分相乘者两分母两分子各相乘所得之数即乘出之分也
设如有三分丈之二与五分丈之四相乘问得几何法以两分母三五相乘得十五分为乘出之分母又以两分子二四相乘得八分为乘出之分子即定为十五分丈之八为所得之数也今以图明之如甲乙为一丈而甲丁亦为一丈作一甲乙丙丁正方形将甲丁分为三分甲乙分为五分内共容十五分即共母数乃两分母三与五乘出之数也其甲丁之三分之二为甲戊甲乙之五分之四为甲己二数相乘得甲已庚戊长方形内容八分即共子数乃两分子二与四乘出之数也甲乙丙丁正方与甲己庚戊长方相较即知甲己庚戊长方为甲乙丙丁正方中之十五分之八矣此零分乘零分之法也【如以真数明之其三分丈之二即六尺六寸六分六厘有余也其五分丈之四即八尺也相乘得五十三尺三十三寸三十三分三十三厘有余即十五分丈之八也葢一丈正方内容百尺分为十五分则每一分得六尺六十六寸六十六分六十六厘有余今得其八分即五十三尺三十三寸三十三分三十三厘有余也】
零分与整数相乘者分子乘整数而以分母归之即所得之数也
设如有七人每人赏银五分两之二问共得若干法以分子二与七人相乘得十四以分母五归之得二两八钱即七人共得之数也葢五分两之二是一两分为五分而得其二分也一人得二分则七人必共得十四分既以一两分为五分今满五分收为一两故以五归十四得二两八钱为共数此零分与整数相乘之法也
整数带零分与整数乘者先将整数俱通为零分相乘得数以分母自乘之数除之即得
设如有整数二丈又四分丈之一与八丈相乘问得几何
法以整数二丈用分母四通为八分加入分子一共得九分又以整数八丈用分母四通为三十二分乃与九分相乘得二百八十八分以分母四自乘之一十六除之得一十八即定为一丈正方一十八为所得之数也此法葢以一丈通为四分是四四自乘之数始合一丈自乘之数故一十六者即分母四自乘之数未乘之先既以四通之故相乘之后必以四四自乘之数收之乃得真数此整数带零分与整数相乘之法也【如以真数明之其二丈又四分丈之一即二丈二尺五寸与八丈相乘即得一十八丈也】
整数带零分与零分乘者先将整数通为零分相乘得数以分母自乘之数除之即得
设如有整数二丈又五分丈之四与零分五分丈之三相乘问得几何
法以整数二丈用分母五通为十分加入分子四得十四分乃与零分分子三相乘得四十二以分母五自乘之二十五除之得一六八即定为一丈正方一又一尺正方六十八为所得之数也此法葢以一丈通为五分是五五自乘之数始合一丈自乘之数故以二十五除之又二丈之零分五分之四与所乘之零分五分之三为同母故用此法如两零分分母不同则先将两零分用互乘法变为同母然后用所变之分母化整为零再与彼一零分相乘得数以所变之分母自乘之数除之即得乘出之数【法见下节】此整数带零分与零分相乘之法也【如以真数明之其二丈又五分丈之四即二丈八尺也其五分丈之三即六尺也以六尺与二丈八尺相乘即得一丈六十八尺也】
整数带零分与整数带零分相乘而零分之分母不同者则以两零分之分母用互乘法齐其数然后各以相同之分母化整为零两数相乘再以同母自乘之数除之即得【如所带零分本为同母者可省互乘】
设如有长方田阔二丈又四分丈之三长三丈又三分丈之二求积
法以两分母四三相乘得一十二为共母数以前分母四乘后分子二得八以后分母三乘前分子三得九为两分子数乃以共母数十二化阔二丈为二十四分加入分子九得三十三分为阔边所变之分数又以共母数十二化长三丈为三十六分加入分子八得四十四分为长边所变之分数爰以阔三十三分与长四十四分相乘得一千四百五十二乃以共母数十二自乘之一百四十四除之得一○○八余四八不尽即定为一丈正方十一尺正方八零一百四十四分尺之四十八约为三分尺之一为所得之数也此整数带零分与整数带零分相乘之法也【如以真数明之其阔二丈又四分丈之三即二丈七尺五寸也其长三丈又三分丈之二即三丈六尺六寸六分六厘有余也以二丈七尺五寸与三丈六尺六寸六分六厘有余相乘即得一十丈零八尺有余也】
大分下又带小分相乘者其例有四【所谓大分下带小分者是将大分之一分又分为几分如大分五分之三又带小分四分之一是将大分五分之三之一分又分为四分而得其一分也】有大小分母俱同者有大小分母俱不同者有大分母同而小分母不同者有大分母不同而小分母同者今以一法驭之总以小分母通大分母为母数又以小分母通大分子加入小分子为子数然后以所变之两母数两子数对乘即得【总以小分母通之者葢小分母又为大分母之每一分之几分小分不能使大大分可以变小使大分母大分子俱变为小分母一体然后可以相乘乘之即所以通之也设法中以度数明之其理自显】
设如有甲数五分丈之三又带此一分之四分之一与乙数五分丈之四又带此一分之四分之二相乘问得几何【此大小分母俱同者也】