御制数理精蕴

  第二十九
  勾股形内作正方第二法如有一甲乙丙勾股形欲于此形内作一正方则将乙丙线引长照甲乙线度増于乙丙作一壬丙线自此壬丙之两末与甲乙线平行作丁壬癸丙两垂线使其度俱与甲乙线等又自丁至癸与壬丙线平行作一丁癸线自丁至丙作一对角线截甲乙线于戊乃自戊与乙丙线平行作戊己线截甲丙线于己又自己与戊乙线平行作己庚垂线成一戊乙庚己正方形即为甲乙丙勾股形内欲作之正方也何则试将戊己线引长成辛戊己子线则此辛戊己子线与甲乙线分丁壬丙癸为四长方形其甲戊子癸长方与辛壬乙戊长方既为丁壬丙癸大长方对角线傍所成两形其分必等【见三卷第七节】故子戊线与戊辛线之比例同于乙戊线与戊甲线之比例也然此子戊线与丙乙线等而戊辛线又与甲乙线等则丙乙线与甲乙线之比例亦同于乙戊线与戊甲线之比例也又甲乙丙与甲戊己两三角形为同式故丙乙线与乙甲线之比例同于己戊线与戊甲线之比例而乙戊线与戊甲线之比例又同于己戊线与戊甲线之比例也乙戊线既与己戊线相等而乙庚线与戊己线己庚线与戊乙线又为两平行线内之垂线其度相等故戊乙庚己四角俱为直角戊乙庚己四角既俱为直角则戊乙庚己之方形即是甲乙丙勾股形内之正方矣
  第三十
  三角形内作正方法如有甲乙丙三角形欲于此形内作一正方则自甲角至乙丙底线作一甲辛垂线将此垂线引长出甲角如乙丙底线度作一壬辛线又自壬两分如乙丙线度与乙丙线平行作一子癸线又自癸至辛作癸辛线截甲乙线于丁自子至辛作子辛线截甲丙线于庚乃自丁至庚作一庚丁线此线必与乙丙平行又自庚丁二处作庚己丁戊二垂线即成丁戊己庚一正方形即为甲乙丙三角形内欲作之正方也何则壬辛线与壬子线之比同于辛丑线与丑庚线之比而辛壬线与壬癸线之比又同于辛丑线与丑丁线之比故辛壬线与癸子线之比亦必同于辛丑线与丁庚线之比也然辛壬与癸子原相等则辛丑与丁庚亦必相等矣辛丑与丁庚既等则丁戊戊己己庚庚丁四边亦必俱等丁戊戊己己庚庚丁四边既俱等则为甲乙丙三角形内之正方无疑矣
  第三十一
  有一直线将此线为正方对角线作正方法如有一甲乙直线欲以此线为对角线作一正方则将甲乙线平分为戊以戊为心以甲乙为界作一圜即于此圜内作一丙丁径线为甲乙线之垂线乃自甲至丙自丙至乙自乙至丁自丁至甲作四直线即成甲丁乙丙一正方形为所求之正方也葢甲丙乙角丙乙丁角乙丁甲角丁甲丙角既俱在半圜内必俱为直角而甲戊丙丙戊乙乙戊丁丁戊甲四三角形之两傍线俱是半径线必相等又此四三角形之两傍线所合之角俱为直角亦必相等则甲丙丙乙乙丁丁甲四直线必俱相等可知矣甲丙乙丁四边形内四角既俱为直角而四边线又俱相等则必为正方形而甲乙线为其对角线矣
  第三十二
  有一直线为正方边与对角线相较之余于此线求作其原正方法如有一甲乙线为正方边与对角线相较之余求作一正方则先将此甲乙线为一边作甲乙丙丁一小正方形次自甲至丙作一小对角线于是以丙为心以乙为界作一圜乃引甲丙线至圜界戊处作一甲戊线将此甲戊线为度作一甲戊己庚大正方形即是所求之正方也试引甲乙线至己作甲己一对角线此对角线之乙己一叚必与戊己边线相等何也其丙乙丙戊为一圜之二辐线既等则丙乙戊丙戊乙二角亦等若于丙乙己直角内减去丙乙戊角又于所作丙戊己直角内减去丙戊乙角所余戊乙己乙戊己二角亦必相等此二角既等则乙己戊己两线必等矣因其相等则所作甲戊己庚一大正方之甲己对角线与戊己一边线相较则原有之甲乙线为其相较之余可知矣







  防何原本十二
  第一
  有一直线将此线为底作一两边度等三角形使底之两边各一角俱比上一角为大一倍之三角形法如有一甲乙直线将此线为底欲作两边度等之三角形而底之两边各一角俱比上一角为大一倍则用十一卷第八节之法于甲乙线之两头各作一七十二度之角将两边线俱引长相交于丙即成一甲乙丙三角形为所求之形也何则凡三角形之三角相并为一百八十度与二直角等今此所作甲乙丙三角形之甲乙两角既俱系七十二度则于一百八十度内减去甲乙二角共一百四十四度余三十六度即为丙角之度三十六度者七十二度之半故甲乙两底角比丙角各大一倍也
  第二
  有一直线依此线度作两边度等三角形使上一角小于两底角一倍之三角形法如有甲乙一直线以此线为一边复依此线度作一边使此两边线所合之上一角小于两底角一倍之三角形则用十一卷第八节之法以甲乙甲丙二线之甲末相合作一乙甲丙角为三十六度再自丙至乙作一乙丙直线为底即得一甲乙丙三角形为所求之形也何则将甲角三十六度与全形三角之共数一百八十度相减余一百四十四度为乙丙两底角之共数今甲丙线与甲乙线既等则乙角与丙角必等因其相等将两底角共数一百四十四度折半得七十二度即为每一底角之数七十二度者三十六度之倍数故甲角比乙丙两底角俱为小一倍也
  第三
  有一直线以此直线为一边作等边等角之五界形法如有甲乙一直线以此直线为一边作一等边等角之五界形则将此甲乙直线为底用此卷第一节法作一两边度等甲丙乙三角形其甲丙乙角为丙乙甲丙甲乙二角之各一半又用十一卷第十五节法于此三角形之周围作一圜此甲丙丙乙两直线原系相等其相对之两弧亦必相等乃以此两弧自戊丁二处为丙平分又自甲至戊自戊至丙自丙至丁自丁至乙作四直线即成甲乙丁丙戊五边五角等度之五界形也何则其甲丙乙角原为丙乙甲角之一半则甲丙乙角为三十六度试自甲乙二处至圜心作甲己乙己二线成甲己乙一三角形则此甲己乙角比甲丙乙角亦为大一倍【见四卷第十一节】故甲己乙角为七十二度而甲乙弧线亦为七十二度矣以七十二度于全圜界三百六十度内减之余二百八十八度折半得一百四十四度即为甲戊丙一叚弧线之数也将一百四十四度折半得七十二度即为甲戊一叚弧线之数也既得甲戊弧线之数则戊丙丙丁丁乙各弧线度俱各为七十二度矣甲乙乙丁丁丙丙戊戊甲五线既俱系相等弧之线则五线之度必俱等五线之度既等则此形又在圜之内而五角之度岂有不相等者哉
  第四
  有一直线分大小两分为相连比例线法如甲乙直线为全分甲丙一叚为大分丙乙一叚为小分以甲乙全分与甲丙大分之比同于甲丙大分与丙乙小分之比则用此甲乙线为一边线依此卷第二节法作两边等度之两底角比上一角各大一倍之甲乙丁三角形又依此卷第三节法取乙丁线度作边角俱等之甲戊乙丁已五边形又自戊至丁作一直线截甲乙线于丙乃得甲丙一大叚为大分丙乙一小叚为小分即是所欲作之相连比例线也何则甲戊乙丁两弧线度等则甲乙戊乙戊丁两角度必等又乙戊丁角与乙甲丁角共立于乙丁弧其度必等再甲戊丁与甲乙丁二角亦同立于甲巳丁弧其度亦必等也至于甲乙丁角原比乙甲丁角大一倍故甲戊丁角比丙戊乙角丙乙戊角俱大一倍其甲丙戊角因为戊丙乙三角形之外角与丙乙戊丙戊乙两内角等故甲丙戊与甲戊丙两角相等此二角既等则甲丙甲戊两线必等矣又甲戊戊乙两线度原相等其戊甲乙角必与戊乙甲角等而甲乙戊一大三角形必与戊乙丙一小三角形为同式形矣葢小三角形之丙戊乙角与大三角形之戊甲乙角等而小三角形之丙乙戊角与大三角形之甲乙戊角为共角而等则小三角形之戊丙乙角与大三角形之甲戊乙角不得不等三角俱等非同式形而何是故甲乙线与甲戊线之比必同于乙戊线与丙乙线之比也夫甲戊原与甲丙相等而乙戊原与甲戊相等故乙戊亦与甲丙相等然则甲乙全线与所分甲丙大分之比必同于甲丙大分与丙乙小分之比可知矣故曰甲乙与甲丙甲丙与丙乙为相连比例之线也
  第五
  平分一直线为数叚法如有甲乙一直线欲平分为三分则自甲乙线之两末作甲丙乙丁二平行线随意取一甲戊度将甲丙线分为甲戊戊庚庚丙三叚又依甲戊度将乙丁线亦分为乙辛辛巳巳丁三叚乃自二平行线之三叚处复作甲丁戊己庚辛丙乙四平行线即平分甲乙直线为甲壬壬癸癸乙之三分矣试观甲乙丁三角形之甲乙乙丁两傍线为与甲丁线平行之壬己癸辛二线所分故俱为相当率今以甲乙全线与乙丁全线之比同于丁已叚与甲壬叚之比而已辛叚与壬癸叚之比辛乙叚与癸乙叚之比亦皆与甲乙全线与乙丁全线之比相同也因其比例俱同故丁乙线之丁巳巳辛辛乙三叚为平分而甲乙线之甲壬壬癸癸乙三叚亦为平分也
  第六
  有分数之直线将别一直线依此线分分为相当比例率法如有甲乙一直线原分为甲巳巳辛辛乙三叚又有一丙丁直线欲依此甲乙线分分作三分为相当比例之率则齐二线之一端以为平行线自甲乙线之甲端过丙丁线之丙端作一纵线复自甲乙线之乙端过丙丁线之丁端作一斜线则二线相交于戊乃自戊至所分巳辛二处作戊巳戊辛二线则丙丁线即分为丙庚庚壬壬丁三叚与甲乙线之甲巳己辛辛乙三叚为相当比例率也试审戊甲乙全形内戊丙庚戊甲已戊庚壬戊已辛戊壬丁戊辛乙之大小六三角形其相当各式皆同如戊丙庚与戊甲已为同式戊庚壬与戊巳辛为同式戊壬丁与戊辛乙为同式故丙庚与甲已为相当二界庚壬与已辛为相当二界壬丁与辛乙为相当二界此六线既各为相当界故各为相当比例率也
  第七
  有二直线作与此二线相连比例之第三线法如有甲乙甲丙二直线欲作与此二线相连比例之第三线则将甲乙甲丙二线之甲末合成一角照甲丙线度增于甲乙线为甲戊线自乙末至丙末作一乙丙线又与乙丙线平行自戊末作一戊己线将甲丙线引至已处乃成一甲已线其自丙末所分之丙已线即为与甲乙甲丙二线相连比例之第三线也葢已戊线既与丙乙线平行故甲乙丙三角形与甲戊己三角形为同式而甲乙甲丙乙戊丙已四叚必为相当比例之四率是以甲乙第一率与甲丙第二率之比即同于乙戊第三率与丙巳第四率之比也夫乙戊之度原与甲丙等故甲乙与甲丙之比即甲乙与乙戊之比而甲丙与丙已之比即乙戊与丙巳之比然则甲乙与甲丙甲丙与丙巳岂非相连比例之三线乎
  第八
  有三直线作与此三线相当比例之第四线法如有甲乙甲丙乙丁三线欲作与此三线相当比例之第四线则取甲丙线度叧作一甲丙线将此所作甲丙线照甲乙线度纪于乙于是以甲为心自乙作弧一叚又取原有之乙丁线度自乙截弧线于丁即自乙至丁作一乙丁线再依甲丙线度自甲过丁作一甲戊线又与乙丁线平行作一戊丙线此戊丙线即为原三线相当比例之第四线也葢甲丙戊三角形与甲乙丁三角形为同式故甲乙线与甲丙线之比即同于丁乙线与戊丙线之比因其比例相同故戊丙线为原有之甲乙甲丙乙丁三线相当比例之第四线也或欲作相当比例之数线则将甲角上下二线引长为甲癸甲子凡相当各二处任意截为防叚作防平行线既得相当比例之数线矣如以甲角之甲子甲癸二线截为丁乙戊丙庚巳壬辛子癸五叚于所截五处作五平行线即得相当比例之十率矣葢以甲乙与甲丙之比同于丁乙与戊丙之比以甲丙与甲巳之比同于戊丙与庚已之比以甲已与甲辛之比同于庚已与壬辛之比以甲辛与甲癸之比同于壬辛与子癸之比故将甲子甲癸二线虽分为无数叚作无数平行线其比例亦无不相同也
  第九
  有二直线欲叧作一线为此二线之中率法如有甲乙乙丙二线欲另作一线为此二线之中率则将甲乙乙丙二线相连为一甲丙全线乃平分全线于戊以戊为心以甲丙两末为界作一半圜自二线相连乙处至圜界作一丁乙垂线即为原有甲乙乙丙二线之中率线也何也丁乙线既为圜径上之垂线则甲乙丁乙乙丙为相连比例之三率【见九卷第七节】故甲乙线与乙丁线之比同于乙丁线与乙丙线之比也比例既同则所作乙丁线为原有甲乙乙丙二线之中率可知矣
  第十
  有二直线欲另作二线为此二线间之两率法如有甲乙乙戊二直线欲另作二线为此二线间之两率则将甲乙乙戊二线之乙末相合为直角又自此二线所合乙角引长为甲乙丙戊乙丁二线次将二矩尺之二角正置于丁戊甲丙二线上如一矩尺为己庚辛一矩尺为壬癸子乃以巳庚辛矩尺之一股切于丁戊线之戊末又以壬癸子矩尺之一股切于甲丙线之甲末仍使二矩尺之已庚癸子二股相合则癸庚二角亦为直角而不离于所跨之线其二矩尺之壬辛二股亦使不离于所切之线末乃自甲至癸自戊至庚自庚至癸作三线即截丁乙线于癸截乙丙线于庚成乙癸乙庚二线即为原有之甲乙乙戊二线间之两率也何也如平分戊癸线于丑则丑为心戊为界成一戊庚癸半圜若平分甲庚线于寅则寅为心甲为界成一甲癸庚半圜今乙癸线为甲癸庚半圜径线上之垂线故乙癸为甲乙乙庚二线之中率而乙庚线为戊庚癸半圜径线上之垂线故乙庚又为癸乙乙戊二线之中率是以甲乙线与乙癸线之比同于乙癸线与乙庚线之比而乙癸线与乙庚线之比亦同于乙庚线与乙戊线之比因其比例相同故乙癸乙庚二线为甲乙乙戊二线间之两率也
  第十一
  有三角形依一界作等积之直角四界形法如有甲乙丙一直角三角形欲依其乙丙界作一直角四界形与原三角形积等则与乙丙平行作一甲丁线又与甲乙平行作一丁丙线即成一甲乙丙丁直角四界形于是平分甲乙线于戊平分丙丁线于巳作一戊巳线则平分甲乙丙丁四界形为两形此所分甲戊巳丁与戊乙丙已两直角四界形之积俱与甲乙丙三角形之积相等也葢甲乙丙三角形为甲乙丙丁四界形之一半今所分甲戊巳丁与戊乙丙已两四界形既俱为甲乙丙丁四界形之一半则必与甲乙丙三角形之积俱相等可知矣又如庚辛壬无直角之三角形依辛壬界作一直角四界形与原三角形积等则与辛壬平行作一庚癸线又自辛壬至庚癸线作子辛癸壬二垂线即成一子辛壬癸直角四界形于是平分子辛线于丑平分癸壬线于寅作一丑寅线则平分子辛壬癸四界形为两形其所分子丑寅癸与丑辛壬寅两直角四界形之积俱与庚辛壬三角形之积相等也试与庚辛线平行作一卯壬线即成庚辛壬卯一斜方形为与子辛壬癸方形同底同髙故其积必等【见三卷第八节】今庚辛壬三角形为庚辛壬卯形之一半则亦必为子辛壬癸方形之一半矣既为一半则所分子丑寅癸与丑辛壬寅直角四界形必与庚辛壬三角形之积相等可知矣