- 首页
- 子藏
- 算法
- 御制数理精蕴
御制数理精蕴
第七
一圜分为三百六十度法如甲乙丙丁一圜界欲分为三百六十度则取圜之辐线度縁圜界比之即分圜界为六叚将六叚各平分为二则为十二叚十二叚各平分为三则为三十六叚三十六叚各平分为十即成三百六十度矣第八
一直线上作角度法如甲乙线上欲作三十度之角则用有度之圜依圜之丙丁辐线度截甲乙线于戊于是以甲为心自戊作弧一叚复依圜界之丙庚三十度之分自戊截弧于己乃自己至甲作一直线即成己甲戊三十度之角矣第九
各种多界形仿己有之形或大或小叧作一同式形法如有甲乙丙一三角形欲仿此式叧作一形则考甲乙界度有防分如甲乙界度为三分今取其二分作一丁戊线又以甲丙界度亦作三分而取其二分以丁为圜心作弧一叚又以乙丙界度亦作三分而取其二分以戊为圜心作弧一段两弧相交于己乃自己至丁戊作二线即成丁戊己一小三角形与原有甲乙丙大三角形为同式也葢丁戊己三角形之三界虽与甲乙丙三角形之三界不等而其相当各角之度俱等因其相当各角之度俱等故其相当各界之比例皆同相当各界之比例既同则其二形之式不得不同也若有一甲乙丙丁戊己六界形欲仿此式叧作一形则在此六界形作分角线分为四三角形照前法仿作四三角形即成一庚辛壬癸子丑小六界形其式与原有之甲乙丙丁戊己大六界形同也
第十
有一直线或上或下一防作与此线平行一线法如甲乙线上有一丙防欲自丙防作与甲乙线平行一线则以丙为圜心任意取甲乙线之近甲边一处作弧一叚如丁又取甲乙线之近乙边一处为心如戊乃照丙丁原度于丙防相对处作弧一叚如己复照丁戊度以丙为心于丙防相对处作弧一叚则二弧相交于己乃自丙至己交处作一丙己直线即为甲乙线之平行线也何则试自丁戊二处至丙己二处作二线即成丙丁戊己一四界形此四界形之丙丁己戊相对之两纵线丙己丁戊相对之两横线因依各度所取必两两相等既两两相等则必为平行线之四边形然则丙己甲乙为平行线四边形之二线岂有不平行之理哉
第十一
有一直线上作一正方形法如甲乙一直线欲作一正方形则以甲为心取甲乙度自乙至丙作乙弧线又以乙为心依甲乙度自甲至丁作一弧线又于甲乙线之两端照本卷第六节立甲丙乙丁二纵线则乙丙弧截于丙甲丁弧截于丁乃自丙至丁作一直线即成甲乙丁丙一正方形也何则丙甲甲乙乙丁三线俱同为一圜之辐线其度必等而丁丙丙甲二线又俱切一圜界为两尖相合其度亦必等【见四卷第七节】则四界俱等矣且甲乙二角又为垂线所立之角必成直角则丙丁二角亦必为直角而四角又等矣四角皆等故甲乙丁丙形为甲乙线上所立之正方形也
第十二
平分一弧为两叚法如有甲乙弧欲平分为两叚则自甲至乙作一甲乙线将此线照本卷第三节平分直线为两分法作一戊丁纵线复自戊引至弧界截甲乙弧于丙即平分甲乙弧为甲丙丙乙两叚矣葢丙丁纵线既平分甲乙线则亦必平分甲乙弧之全圜既平分甲乙弧之全圜则必平分甲乙弧为两叚可知矣【见四卷第六节】
第十三
有一叚弧欲继此弧作一全圜法如有甲乙一叚弧继此弧欲作一全圜则在此弧界任意指三处如甲丙乙自甲乙二处至丙作甲丙丙乙二线照前节作平分甲丙丙乙两之丁己戊己二线引长则相交于己乃以己为心继甲乙弧界作一全圜即成甲乙弧之全圜也葢丁己戊己二线既平分甲丙丙乙二则必平分甲丙丙乙二弧【见四卷第六节】既平分甲丙丙乙二弧则其相交之处必为圜心故己为继甲丙乙弧界所作全圜之圜心也
第十四
不拘何处有三防求縁此三防作一圜法如甲乙丙三防不在一直线上欲縁此三防作一圜则依前节作甲丙丙乙二线又平分此二线正中作丁己戊己二垂线引长至己处相交遂以己为心以甲乙丙为界作一圜则甲乙丙三防俱在一圜之界矣【此节之理与前节同】
第十五
有圜不知中心求知中心之法如有一甲乙丙丁圜不知其中心欲求知之则于此圜界随便取甲乙丁三处从甲至乙至丁作二线将此二线平分正中为戊己二处自戊己作戊庚己庚两垂线则相交于庚此庚即是甲乙丙丁圜之中心也【此节之理亦与前同】
第十六
有圜外一防将此防至圜界作切线法如一圜之外有一甲防欲将此甲防与圜界相切作一切线则以此甲防至圜心作一甲乙直线又以乙为心以甲为界作一甲丙圜界又自甲乙线所截圜之丁处作一丁己垂线则此垂线即截甲丙圜界于丙乃自丙至乙心作一丙乙直线复自丙乙所截圜界戊处作一戊甲线即是自甲防至圜界所作之切线也何则此乙丁乙戊既同为一圜之辐线其乙甲乙丙亦同为一圜之辐线则甲乙戊与丙乙丁两三角形之各两边线必等而两三角形又同一乙角然则两三角形之每相当各角必俱等矣【见二卷第六节】夫丁丙线原为甲乙辐线之垂线则丁角必为直角而相当之戊角亦必为直角矣戊角既为直角则甲戊线亦必为乙丙辐线之垂线故甲戊与丙丁皆为圜界之切线也【见四卷第九节】
第十七
有圜内线欲与此线平行作圜外切线法如有一甲乙丙丁圜之乙丁线欲与此乙丁线平行作切圜之切线则从圜心戊至乙丁作戊己垂线平分乙丁线于己引长截圜界于甲为甲戊线又切甲处作庚辛线为甲戊之垂线即是所求之切线也何则此庚辛线既为甲戊线之垂线其戊甲庚角必为直角又己戊线既为乙丁线之垂线其戊己乙角亦必为直角然则戊甲庚角与戊己乙角既俱为直角其度必等因其度等故乙丁庚辛两线为两平行线也又戊甲线为圜之辐线而庚辛既为甲戊之垂线则必为甲乙丙丁圜之切线可知矣【见四卷第九节】
第十八
作函三角形之圜法如甲乙丙三角形欲作函此三角形之一圜则平分甲丙边于丁平分丙乙边于戊自丁戊作二垂线引长至己相交即以己为心任以甲丙乙三角形之一角为界作一甲丙乙庚圜即是函甲丙乙三角形之圜也【此节之理与本卷第十三节同】
第十九
圜内作等度四角形及等度八角形法如甲丙乙丁圜内欲作一等度四角形则以甲乙丙丁二径线交于圜心皆作直角复自甲丙乙丁四处作甲丙丙乙乙丁丁甲四线即成甲丙乙丁等度之四角形也何则甲乙丙丁二径线在圜心作直角相交则平分圜界为四分矣既平分圜界为四分则甲丙丙乙乙丁丁甲四线度必等而甲丙乙丁四角既俱立在一圜之半界亦必俱为直角【见四卷第十四节】既俱为直角必为正方形可知矣苟欲作等度八角形则照前平分圜界为四分将所分之每分又各平分为二分即平分圜界为八分乃作八线即成甲戊丙己乙庚丁辛一形为圜内等度八角形也
第二十
圜内作等度六角形三角形十二角形法如甲圜内欲作等度六角形则以圜之甲乙辐线为度将圜界分为乙丙丙丁丁戊戊己己庚庚乙六叚作六线即成一乙丙丁戊己庚等度之六角形也何则苟以乙为心以甲为界作一丙甲庚弧线则乙丙乙甲二线俱为丙甲庚圜之辐线而度必等夫乙丙丁戊己庚六界形之诸界因俱照甲乙辐线度所作故此形之六界俱相等也若欲作三角形则照前法将圜界分为六叚以所分六叚两两相合为三叚作乙丁丁己己乙三线即成一乙丁己等度三角形也若欲作十二角形亦照前法将圜界分为六叚以所分六叚各平分为二分作十二线即成一乙辛丙壬丁癸戊子己丑庚寅等度之十二角形也第二十一
圜内作各种等度多界形总法苟甲圜内欲作等度多界各种形则察各种形之各角度【见三卷第十七节】如等度三角形之三角俱六十度四角形之四角俱九十度五角形之五角俱一百零八度六角形之六角俱一百二十度七角形之七角俱一百二十八度三十四分一十七秒八角形之八角俱一百三十五度九角形之九角俱一百四十度十角形之十角俱一百四十四度十一角形之十一角俱一百四十七度一十六分二十二秒十二角形之十二角俱一百五十度今甲圜内若欲作一等度九角形则以九角形之每角一百四十度与一百八十度相减余四十度复以别有度之圜取四十度之分以分甲圜界即平分为乙丙丁戊己庚辛壬癸之九分再照平分度作乙丙丙丁丁戊戊己己庚庚辛辛壬壬癸癸乙九线即成甲圜内等度之九角形也何也从圜心甲作线至各角分九角形为九三角形其每三角形之三角共一百八十度内减去二界角一百四十度余心角四十度即每界所对之角此九角形之每界即九心角之线故以心角度分圜界度即得九角形之分也凡圜内欲作等边多界形皆依此法作之
第二十二
作函圜等度多界形法如欲作函圜之等度三角形四角形五角形或多界形则将圜界照欲作之几界平分为几段乃自圜心至所分各界作几辐线于辐线之末各作切界线俱引长至合角即成函圜之等度多界形也如第一图自甲心至庚辛壬三角作甲庚甲辛甲壬三线即成六三角形其庚甲乙庚甲丙两三角形之庚乙庚丙二线为合尖切圜之线其度必等【见四卷第七节】而庚甲乙辛甲丁两形之庚甲乙辛甲丁二角为对角其度又等庚乙甲辛丁甲之二角为辐线切线所成之角其度又皆为直角相等【见四卷第五节】则其余一角亦必等而其乙甲甲丁二界又同为一圜之辐线其度必等则其他界亦必俱等可知再辛丙辛丁二线壬丁壬乙二线俱为合尖切圜之线其度相等而辛甲丙与壬甲乙两三角形壬甲丁与庚甲丙两三角形必俱与前每相当之角等则此六三角形俱相等矣六三角形俱相等则其庚乙乙壬壬丁丁辛辛丙丙庚相等之六界两两相合即成庚壬庚辛辛壬之三界其度安得不等乎故庚辛壬三角形为函圜等界形也其第二图函圜四角形第三图函圜五角形或更欲作多界形其理皆同
第二十三
作函等度多界形之圜法如甲乙丙三角形或甲乙丙丁四角形或甲乙丙丁戊五角形欲作函此三形之圜则任用此三形之甲乙乙丙二界平分于庚辛二处乃自庚辛二处各作垂线至各形中心相交为己即以己为心以各形之角为界作圜即成函此三形之圜也何也各形之界皆为圜之线而线上所作之垂线必皆交于圜心今甲乙乙丙二界上所作之庚己辛己二线既平分二界而相交于已则己必为圜心故以己为心作圜即成函各等界形之圜也
第二十四
作函于等度多界形之圜法如甲乙丙三角形或甲乙丙丁四角形或甲乙丙丁戊五角形欲在此三形内各作一圜则照前节平分甲乙乙丙二界作己庚己辛二垂线引长相交于己即以己为心以庚辛为界作圜即成多界形内所函之圜也何也己庚己辛二线是平分甲乙乙丙二线之垂线引长之必相交于各形之中心今既相交于己则己必为各形之心凡形心作垂线至各界其度必等即如圜之辐线故以己为心庚辛为界所作之圜即为各等界形所函之圜也
第二十五
有一三角形一圜形于此圜内作切圜界三角形与原有之三角形同式法如有甲乙丙一三角形丁戊己庚辛一圜形欲于此圜内作一切界三角形与原有之甲乙丙三角形同式则于圜界任意作与甲角相等之辛角将此角之两边线俱引至圜界作辛庚辛戊二线再自戊至庚作一戊庚线又于戊处作与乙角相等之庚戊丁角爰自戊至丁作一丁戊线复自庚至丁作一庚丁线成一丁戊庚三角形即是所求之圜内切界三角形与原有之甲乙丙三角形为同式也何则其庚辛戊三角形之辛角与庚丁戊三角形之丁角其尖既俱与圜界相切而共立于戊己庚一叚弧分其度必等【见四卷第十二节】此辛角原与甲角等则丁角亦必与甲角等又庚戊丁之戊角原系依甲乙丙之乙角之度而作者固相等夫丁角与甲角戊角与乙角既等则所余之庚角与丙角亦必等其三角既俱等其两形必为同式可知矣第二十六
有一三角形一圜形于此圜外作切界三角形与原有之三角形同式法如有甲乙丙一三角形戊己庚一圜形欲于此圜外作一切界三角形与原有之甲乙丙三角形同式则将原有之甲乙丙三角形之乙丙底线引长至辛壬二处此两傍即成辛乙甲壬丙甲二外角乃于圜心丁处作与辛乙甲角相等之戊丁庚角又作与壬丙甲角相等之己丁庚角则成丁戊丁己丁庚之三辐线于三辐线之末作三垂线引长相交成一癸子丑三角形即是所求之圜外切界三角形与原有之甲乙丙三角形为同式也何则凡三角形之三角相并必与二直角等【见二卷第四节】今戊丁庚子一四边形可分为两三角形则此四边形之四角相并必与四直角等矣四直角内减去子戊丁子庚丁之两直角所余戊丁庚戊子庚两角相并亦必与两直角等也又辛乙甲外角与甲乙丙内角相并亦与二直角等【见一卷第十四节】其戊丁庚角既系依辛乙甲角之度而作者则戊子庚角必与甲乙丙角相等其庚丑己角亦必与甲丙乙角相等而己癸戊角又必与乙甲丙角相等三角俱等则两形之式必相同也
第二十七
三角形内作切三界之圜法如有一甲乙丙三角形欲与此形内切三界作一圜则依此卷第二节之法将甲乙丙三角俱平分为两分所分三角之三线俱引长使相交于丁自丁至甲乙乙丙丙甲三界线作丁戊丁己丁庚三垂线乃以丁为心以戊己庚为界作一圜即是三角形内之切界圜也何则戊甲丁与庚甲丁两小三角形之甲角因自一角为两平分其度必等又丁戊丁庚既系两垂线则甲戊丁甲庚丁二角俱为直角而相等此戊甲丁庚甲丁两小三角形内之二角既等其各三角必俱相等而又共用一甲丁线为边则此两三角形之各相当边亦必俱等故丁戊线与丁庚线等者即是丁己线与丁戊线丁庚线等也此三线既等以为辐线作戊己庚圜则必与三角形之甲乙乙丙丙甲三界相切矣
第二十八
勾股形内作正方法如有一甲乙丙勾股形欲于此形内作一正方形则以丙为心以乙为界作一乙丁弧线将此弧线平分于戊自戊至丙作一戊丙线即平分丙角为两分而截甲乙线于庚矣乃自庚与甲丙线平行作庚己线又自庚与乙丙线平行作庚辛线即成庚己丙辛一正方形为所求甲乙丙勾股形内之正方也何则甲丙乙勾股形之丙角原是直角今庚辛庚己二线各与甲丙乙丙平行则庚己丙辛之四角必俱为直角矣而庚己丙三角形内己庚丙角与己丙庚角又俱是直角之一半其度必等则己丙线与庚己线相等而庚辛线与己丙线庚己线与辛丙线皆为平行线内之垂线其度亦等故庚己己丙丙辛辛庚四线相等而庚己丙辛四角俱为直角是为甲乙丙勾股形内之正方形也