- 首页
- 子藏
- 算法
- 御制数理精蕴
御制数理精蕴
第十二
有一长方形作与此积相等之正方形法如有甲丙一长方形欲作与此长方形相等之正方形则将甲丙形之丙乙纵线合于甲乙横线照此卷第九节法求得甲乙丙乙二线之中率为丁乙线即以丁乙线为一边作一丁戊正方形即与甲丙长方形之积相等也何则大凡相连比例三率内中率所作之正方形积与首率末率所作之长方形积相等今丁乙线既为甲乙丙乙二线之中率则丁乙线所作之丁戊正方形积焉得不与甲乙丙乙二线相合所作之甲丙长方形之积相等乎
第十三
凡多界形作与本形同式或大或小之形法如有甲乙丙丁戊已庚辛之多界形欲作比此形小一半之同式形则自此形中心壬处至各角作众线又取甲乙乙丙丙丁丁戊戊己己庚庚辛辛甲各界度之一半与各界平行置于对角各线之间为癸子子丑丑寅寅卯卯辰辰巳巳午午癸之八线即成癸子丑寅卯辰巳午之形为原形每界减半之同式形也何也如对角线间所成之甲乙壬癸子壬大小两三角形之甲乙癸子线既平行而又同一壬角则其相当各角俱等而两形之式相同仿此推之其乙丙壬子丑壬二形丙丁壬丑寅壬二形丁戊壬寅卯壬二形戊已壬卯辰壬二形巳庚壬辰巳壬二形庚辛壬巳午壬二形辛甲壬午癸壬二形必俱为同式形此各相当大小两形既俱同式则所作癸子丑寅卯辰已午小形之各边为甲乙丙丁戊巳庚辛大形之各边之一半而为同式形可知矣又如甲乙丙丁戊巳庚辛壬癸形从甲角作线至各角取乙丙度之一半置于甲乙甲丙二线之间与乙丙平行如子丑照此于诸对角线间作诸界之平行线即成甲子丑寅卯辰巳午未申小形为原形每界减半之同式形其理亦与前同若欲作比原形大防倍之形则以所作诸对角线按分引长而于本形外作诸界之平行线即成所欲作之大形也
第十四
作分厘尺法如甲戊尺三寸每寸欲分为百厘则将甲乙边平分作十分将戊巳边亦平分为十分对所分之分作诸横线与乙戊平行次将一寸之甲辛乙丙两边俱分为十分于甲辛边之第一分作斜线至乙丙边之乙处如此作十斜线俱与第一分斜线平行即分乙丙之一寸为一百厘也何也甲辛乙丙皆为一寸之度俱平分为十分矣若将每分又分为十厘即每寸亦得百厘然度狭线多必致相淆今作斜线横线各十其横斜相交处共有百分此百分即百厘也如第一斜线与第一横线相交之防即为一厘与第二横线相交之防即为二厘以至第十横线相交之防为十厘即甲辛边所分之第一分之十厘也一斜线有十厘则十斜线岂非百厘乎由此推之若作二十横线则一斜线得二十厘每寸即分为二百厘作百横线则一斜线得百厘每寸即分为千厘其法甚简而其用尤甚便也
第十五
凡有三角形知其一角之度及此一角之两傍界或知其二角之度及此二角之间一界或不知角度但知三界欲求其余角余界法如有一甲乙丙三角形知丙角为三十八度四十四分及丙角两傍之丙甲界长十四丈丙乙界长十三丈而欲知其余角余界则依十一卷第八节法作与丙角相等之三十八度四十四分之丁角将丁角两傍之丁戊界作十四分丁巳界作十三分乃自戊至巳作一戊巳线成一丁戊巳小三角形与甲乙丙大三角形同式量其戊己边得九分即大形之甲乙边为九丈也再用有度之圜量取小形戊角得六十四度三十七分即大形甲角之度也小形巳角得七十六度三十九分即大形乙角之度也何也夫甲乙丙戊已丁两三角形之式既同其相当各角各界必俱相等小形之丁角即与大形之丙角等其余两角亦必等小形之丁已边既以十三分当大形丙乙边之十三丈则小形戊巳边之九分必当大形甲乙边之九丈矣又或知甲乙丙三角形之乙角为七十六度三十九分丙角为三十八度四十四分及乙丙界长十三丈而欲知其余角余界则作己丁界为十三分照乙角丙角度作已角丁角于是画巳戊丁戊二界相交于戊即成戊巳丁同式之小三角形此小形之戊角必与甲角等而小形之丁戊界十四分与大形之甲丙界十四丈相当小形之戊己界九分与大形之甲乙界九丈相当矣若知甲乙丙三角形之甲乙甲丙乙丙三界而不知其角则照前将三界之度作同式之小形量其三角之度即知大形之角度矣
第十六
作分数比例测量仪器法以甲丙乙半圜界分为一百八十度每度作六十分将此半圜之丁甲丁乙丁丙三半径线照所容方界分截开分为一百分于每分上俱与三半径平行作纵横线于甲乙径线之甲乙两末作两定表以圜丁心为枢作一游表如丁巳将此游表亦如前所分一百分度作二百分复于此仪器后面作一垂线记号以挂坠线如庚即成一全仪器用以测髙深广逺可知其各角各界之度矣如有一辛壬旗杆欲测其髙则将仪器按坠线立准看甲乙径线两末之定表与旗杆癸处相对乃为地平再将丁巳游表与旗杆顶尖辛处相对次量仪器中心所对处至旗杆癸处得防何如有四十丈则看仪器丁乙线上自丁心至子得四十分以当地平四十丈即视与子相对垂线至游表相交处有防何如丑子三十分即为旗杆自辛至癸相当数为三十丈也再加癸壬髙即得旗杆辛壬之共髙度矣盖仪器上之丁子丑小三角形与所测得丁癸辛大三角形原为同式其相当各界之比例必俱相同故以丁子四十分与子丑三十分之比即同于丁癸四十丈与癸辛三十丈之比也若欲知丁辛线数即视游表自丁至丑相交之处得防何如有五十分其相当数即为五十丈也若欲知丁癸辛三角形之各角度则视圜界与游表相交处如巳其乙巳弧度即丁角三十五度一十三分其余巳丙弧五十度四十七分即辛角度而癸辛线原与子丑垂线平行为平行线故癸角必是直角而为九十度也
第十七
仿各种地形画图法如有甲乙丙丁地形欲画一图则选能见各地之二处立仪器为戊为巳将戊与巳对准定表先自戊以游表视庚辛壬癸等处得诸角之度皆细记之如庚戊巳角得八十一度辛戊巳角得五十度三十分壬戊巳角得四十五度八分癸戊巳角得三十三度二十分次自巳以游表照前视庚辛壬癸等处得诸角之度亦细记之如庚已戊角得三十五度四十分辛巳戊角得四十度十分壬已戊角得四十七度二十五分癸巳戊角得七十度于是任意作一子丑线为戊己相当线于此子丑线之两末作诸角与所记诸角相等将所作诸角之各线俱引长使相交于寅卯辰巳等处乃以庚辛壬癸所有之诸地形并其余各处凡目之所见俱画于图之相当各界即成一午未申酉之图即甲乙丙丁地形之图也葢午未申酉图内所作寅子丑卯子丑类诸三角形之角度皆与甲乙丙丁地形之庚戊已辛戊巳类诸三角形之角度相等而作故其相当各三角形俱为同式此所以全图与全地形为同式也
第十八
画地理图欲约为小图或欲广为大图法如有甲乙丙丁一地理图欲约为小图为原图四分之一则用甲乙丙丁形界之四分之一画一戊已庚辛形将甲乙丙丁原形任意分为数正方形而将小形亦分为数正方形视原图中所有山川城郭村墅林园函于大图之某正方分者约而画入小图某正方形内则此所画之戊巳庚辛小图即与原有甲乙丙丁大图为同式矣
第十九
作比例尺平分线法如此比例尺欲作平分线则自甲枢心至乙丙二末作甲乙甲丙二线用本卷第五节法分之各平分为二百分即为比例尺之平分线也以用法明之如有丁戊一直线欲平分为十分则将比例尺一百分之己庚二防照丁戊线度展开勿令移动次取比例尺之第十分之辛壬二防相离之度即是丁戊线之十分之一分也何则自乙至丙作一线自己至庚作一线自辛至壬复作一线其甲乙丙三角形与甲己庚三角形为同式而甲己庚三角形又与甲辛壬三角形为同式是以所分甲己线与甲乙线之比同于己庚线与乙丙线之比而甲辛线与甲己线之比亦同于辛壬线与己庚线之比也然则十分之甲辛线既为百分之甲己线之十分之一其辛壬线亦必为己庚线之十分之一矣丁戊线原与己庚线同度则辛壬线亦为丁戊线之十分之一可知矣
第二十
作比例尺分圜线法如于比例尺欲作分圜线则自甲枢心至乙丙二末作甲乙甲丙二线乃平分甲乙线于未以未为心以甲乙二末为界作一半圜于是分圜界为一百八十度复以甲为圜心至所分圜界戊巳庚辛壬癸子丑等处作各线又将诸线度移于尺之甲乙甲丙二线则此二线即成一圜之诸之总线也以用法明之如寅卯寅辰二线所合寅角欲知其度则以寅为心作一辰卯弧将比例尺六十度之丁未两防相距之度照寅辰或寅卯度展开勿令移动次取卯辰相距之度于比例尺上寻至八十度之申酉处恰符即是寅角为八十度也何则若自丁至未自申至酉作二线成甲申酉甲丁未两同式三角形其相当各角各界俱为相当比例之率故甲未线与甲酉线之比同于丁未线与申酉线之比也夫甲未线既为比例尺所作甲庚六十度之线而甲酉线又为甲辛八十度之线其丁未线既与小圜寅卯辐线等而辐线原与六十度之线等然则丁未线即小圜六十度之线而申酉线亦为小圜八十度之线也以此得知寅角之卯辰度为八十度也
第二十一
作比例尺分面线法如此比例尺欲作分面线则以甲枢心处至乙丙二末作甲乙甲丙二线自甲截甲丙线于丁照所截甲丁度于甲心作一甲戊垂线自戊至丁作一戊丁线又照戊丁线度自甲截甲丙线于已自戊至已作一戊已线又照戊已线度自甲截甲丙线于庚自戊至庚作一戊庚线又照戊庚线度自甲截甲丙线于辛自戊至辛作一戊辛线又照戊辛线度自甲截甲丙线于壬自戊至壬作一戊壬线照此累累截之至丙末又将甲丙线所截各度移置甲乙线即成比例尺之分面线也何则于甲丁戊直角三角形之三界作卯丁辰戊戊已三正方形其甲丁甲戊二线因为相等度所作故卯丁辰戊二形必等再于戊甲丁直角相对之戊丁界所作之戊巳一方形亦必与直角两旁界所作卯丁辰戊二方形相等也【见九卷第四节】次于甲已界作未巳正方形甲己界原与戊丁等则甲已界所作未已方形即与戊丁界所作之戊巳方形相等矣未巳方形既与戊巳方形等则必与卯丁辰戊二形相等而亦与卯丁之倍数相等矣夫甲巳界即大于卯丁形一倍为未巳形之一界也仿此论之则甲庚界即为比卯丁形大二倍形之界而甲辛甲壬等界即为比卯丁形大三倍四倍形之界可知矣以用法明之如有一癸子正方形欲作大二倍之正方形则将比例尺展开使其丁丑相距之度与癸子界度等次取比例尺寅庚相距之度即是比癸子方形大二倍之方形之一面界度也何则自丁至丑自庚至寅作丁丑庚寅二线成甲丁丑甲庚寅同式两三角形则甲丁线与甲庚线之比即同于丁丑线与庚寅线之比也夫甲庚线所作方形原比甲丁线所作方形大二倍则庚寅线所作方形必比丁丑线所作方形亦大二倍矣丁丑之度原与子癸等则寅庚线岂非比子癸方形大二倍方形之一界乎
第二十二
作比例尺分体线法如于比例尺欲作分体线则以甲枢心之甲乙甲丙二线任作丁已一正方体取其戊己一界之度置于尺上自甲截甲乙线于庚次作比戊已界大一倍之辛壬线又于戊巳辛壬二线间照本卷第十节法作相连比例之癸子丑寅二率乃取癸子线度置于尺上仍自甲截甲乙线于辰则甲辰所作卯子正方体必比甲庚所作丁已正方体大一倍矣何则试将癸子线作卯子正方体则与丁己正方体为同式其二体相比之比例必同于戊已癸子二界所生连比例加二倍之比例今辛壬线既为戊巳相连比例之第四率则丁已卯子二体之比例必同于戊已辛壬二线之比例矣辛壬线既比戊己线大一倍则卯子体亦比丁已体大一倍可知矣又作比戊已界大二倍之己未线仍照本卷第十节法作戊已巳未二线间相连比例之申酉戌亥二率乃取申酉线度置于尺上自甲截甲乙线于干则甲干所作午酉正方体即比甲庚所作丁巳体大二倍矣照此屡倍戊己界求相连比例之四线取其第二线度置于尺之甲乙线上又按甲乙线所截各度移置甲丙线即成比例尺之分体线也以用法明之如有一坎庚正方体欲作大二倍之体则将比例尺展开使其庚与庚【第一次所截之防】相距之度与艮庚界度等次取比例尺干与干【第三次所截之防】相距之度即是比坎庚正方体大二倍之正方体之一界度也何则自比例尺之庚干二处作庚庚干干二线即成甲庚庚甲干干同式两三角形则甲庚线与甲干线之比同于庚庚线与干干线之比例矣夫甲干线所作方体原大于甲庚线所作正方体之二倍则干干线所作正方体必大于庚庚线所作正方体之二倍可知矣又防法设正方体界一百厘其积数一百万厘以二因之成二百万厘立方开之得界一百二十五厘又以三因之成三百万厘立方开之得界一百四十四厘照此屡倍积数开立方将所得之数于分厘尺上取其度截比例尺之甲乙甲丙二线即成分体线与前求连比例之法无异也
御制数理精蕴上编卷四
<子部,天文算法类,算书之属,御制数理精蕴>
钦定四库全书
御制数理精蕴上编卷五
算法原本一
算法原本二
算法原本一
第一
一者数之原也众一相合而数繁焉不能无大小多寡之不齐而欲知其所以分合之故必有一定之法始可以得其准若夫累积小数与大数等者此小数即度尽大数之准也【如大数有八小数有二四倍其二与八必等则二即为度尽八之准】苟累积小数不能与大数等者此小数即非度尽大数之准也【如大数有八小数有三二倍其三为六小于八矣二倍其三为九又大于八矣若此者即为非度尽大数之准】要之小数为大数之平分者即能度尽大数而小数非大数之平分者即不能度尽大数是故以小度大以寡御多求其恰符而毫无舛者惟在得其平分之法而已
第二
数之目虽广总不出奇偶二端何谓偶两整平分数是也何谓奇不能两整平分数是也如二四六八十之类平分之俱为整数斯谓之偶数矣若三五七九十一之类平分之俱不能为整数斯谓之奇数矣又如小偶数分大偶数得偶分则谓之偶分之偶数【如小偶数四分大偶数三十二得八平分是为偶分其三十二即为偶分之偶数】小偶数分大偶数得奇分则谓之奇分之偶数【如小偶数六分大偶数三十得五平分是为奇分其三十即为奇分之偶数】又如小奇数分大奇数得奇分则谓之奇分之奇数矣【如小奇数五分大奇数十五得三平分是为奇分其十五即为奇分之奇数】