- 首页
- 子藏
- 算法
- 御制历象考成后编
御制历象考成后编
用日躔月离求实朔望
从来求实朔望有二法一用本日次日两子正日月黄道实行度比例其相防之时刻为实朔相对之时刻为实望推逐月朔望用之【见下编推合朔望法】以巳有本年逐日之日躔月离故也一用本年首朔先求本月平朔望之时刻然后求其平行实行之差比例加减而得实朔望之时刻推交食用之【见上编朔望有平实之殊篇及下编推日食月食法】因上考徃古下推将来不必逐日悉推其躔离而即可迳求其朔望故也斯二法诚不可偏废但从前交食求平行实行之差太隂惟用初均故甚整齐简易今求太隂初均又有诸平均之加减旣属繁难而黄白大距又时时不同非推月离不得其凖故今交食推实朔望合二法而兼用之先推平朔望以求其入交之月次推本日次日两子正之日躔月离以求其实朔望之时又推本时次时两日躔月离以比例其时刻较之旧法似为纡逺然太隂之行甚速因迟疾差之故一日之内行度时时不同且平行实行之差大者至八九度则平朔望与实朔望之相距即至十有余时今以前后两时相比例较之止用两子正实行度相比例者固为精宻即较之以距时为比例者亦又加详矣
用两经斜距求日月食甚时刻及两心实相距
新法算书以实朔用时即为日食食甚用时以实望用时即为月食食甚时刻皆黄白同经【太隂自道度与太阳黄道度相等为黄白同经】上编以此时两心斜距犹逺惟自白极过太阳作经圏与白道成直角太隂临此直角之防两心相距最近始为食甚故以白道升度差为食甚距弧以一小时月距日实行比例得时分与实朔望用时相加减方为食甚时刻【月食即食甚时刻日食为食甚用时】其法较前为加密矣【见月食五限时刻日食三限时刻篇】近日西法用日躔月离比例求实朔望是为黄道同经较之新法算书去食甚为尤逺而其求食甚之法则亦以两心相距最近为食甚实纬以实朔望太隂距最近防之度为食甚距弧又以黄白二道原非平行而日月两经常相斜距若以太阳为不动则太隂如由斜距线行故求两心相距最近之线不与白道成直角而与斜距线成直角其距弧变时亦不以月距日实行度为比例而以斜距度为比例较之上编为尤近焉虽度分时刻所差无多而其理更为细密图说详着于左如图甲乙为黄道丙乙为白道乙角为中交新法算书以日心在甲月心在丙为实朔影心在甲月心在丙为实望甲乙与丙乙等是为黄白同经无另求食甚之法上编以月行至丁为食甚甲丁距纬与白道成直角较甲丙为近故丙丁为食甚距弧以月距日实行比例得时分加于丙防实朔望之时刻方为食甚时刻今用日躔月离黄道度算则以日心在甲月心在戊为实朔影心在甲月心在戊为实望甲戊距纬与黄道成直角是为黄道同经戊之去丁较丙丁为尤逺按上编之法当以甲乙黄道度求丁乙白道升度与戊乙太隂距交白道度相减余戊丁为食甚距弧而仍以甲丁距纬为食甚两心实相距夫日月各有行分日在甲月既在戊逮月由戊行至丁则日亦不在甲而顾谓甲丁为食甚两心实相距戊丁为食甚距弧者盖月由戊行至己则日由甲行至庚庚己与甲丁平行甲庚与辛已等庚己与甲辛等丁己与辛己甲丁与庚己皆相差无多故借甲丁为与庚己等为两心实相距借丁己为与辛己等为日行【月食为影心行与日行等】而戊己原为月行则戊丁即为月距日之行故即以戊丁为距弧以一小时月距日实行为比例即得食甚距时也今求食甚之法以戊乙与甲乙原非平行日月两经常相斜距己防固为直角相对之时而其相距尤近必犹在己防之后试与甲乙平行作戊壬线为黄道距等圏取一小时日实行甲癸之分截之于子取一小时月实行截白道于丑则子丑为一小时两经斜距又与戊子平行作丑寅线与子丑平行作戊寅线则寅丑与戊子等亦为一小时日实行戊寅与子丑等亦为一小时两经斜距戊寅丑与戊辛己为同式形月行为戊丑则日行为寅丑【与甲癸等】斜距为戊寅月行为戊己则日行为辛己【与甲庚等】斜距为戊辛是日月二道原非平行而两经斜距则常为一线若以日心为不动将庚防合于甲则月心己防必合于辛将癸防合于甲则月心丑防必合于寅是月在戊丑白道上行即如在戊寅斜距线上行矣乃自甲防与戊寅斜距成直角作甲夘线与丑寅平行作夘辰线与甲夘平行作辰巳线则甲己与夘辰等为实朔至食甚之日实行戊辰为实朔至食甚之月实行辰巳与甲夘等即食甚两心实相距甲夘相距之近尤近于甲辛【甲夘为股甲辛为股必短于也】是月心临于辰防方为食甚其实行在己防后也若以日心为不动将己防合于甲则月心辰防必合于夘故戊夘为食甚距弧求之之法先用戊丑寅三角形寅丑边为一小时日实行戊丑边为一小时月实行丑角与乙角等即本时黄白交角用切线分外角法求得戊角为斜距交角差【斜距交角差者乃斜距黄道交角与黄白交角之差此本系弧线三角形因其形甚小故作直线算以从简易】并求得戊寅边为一小时两经斜距次用甲戊夘三角形以丑戊寅角与丑戊壬黄白交角相加【戊壬寅丑二线皆与甲乙线平行故丑角戊角皆与乙角等】得寅戊壬角为斜距黄道交角即与夘甲戊角等【甲戊午与甲夘戊及戊夘午皆为同式三角形故寅戊壬角与夘甲戊角等】乃以半径与甲角余之比同于甲戊与甲夘之比【此亦作直线算】而得甲夘为食甚两心实相距又以半径与甲角正之比同于甲戊与戊夘之比而得戊夘为食甚距弧然后以戊寅一小时两经斜距为一率一小时为二率戊夘食甚距弧为三率求得四率为食甚距时盖月行为戊辰日行为夘辰斜距为戊夘戊夘辰三角形与戊寅丑三角形为同式比例也今设乙角为四度五十八分三十秒【丁甲戊角戊丑寅角丑戊壬角皆与乙角等】甲乙为实朔太隂黄道距中交前十度戊甲为太隂距黄道北五十一分五十七秒六五寅丑为一小时日实行二分二十七秒八五戊丑为一小时月实行三十二分五十六秒四六旧法用甲乙戊三角形求得甲丁两心实相距为五十一分四十五秒九○戊丁距弧为四分三十秒三五以日月二实行相减得一小时月距日实行为三十分二十八秒六一此例食甚距时得八分五十二秒二四今法先用戊丑寅三角形求得丑戊寅角二十四分五秒八二与丑戊壬角相加得五度二十二分三十五秒八二为斜距黄道交角与夘甲戊角等又求得戊寅邉三十分二十九秒一九为一小时两经斜距次用甲夘戊三角形求得甲夘两心实相距为五十一分四十三秒九三比甲丁近二秒戊夘距弧为四分五十二秒一三以戊寅两经斜距比例食甚距时得九分三十四秒九四比戊丁距时迟四十三秒是为两心相距最近之时若实朔望在交后则日由乙向甲月由乙向戊两心以渐而逺食甚在实朔望前距时比旧为早其【法并同】
求月食初亏复圆时刻【食既生光附】
月食求初亏复圆时刻以食甚实纬为一边并径为一边以实纬交白道之角为直角用正弧三角形法求得初亏复圆距食甚之弧以一小时月距日实行比例得时分与食甚时刻相加减即得初亏复圆时刻【初亏减复圆加】上编言之详矣【见月食五限时刻篇】今以弧线可作直线算故用勾求股之法即得距弧至以距弧变时则以一小时两经斜距为比例葢食甚两心实相距既与斜距成直角则初亏复圆之并径亦与斜距成勾股故仍以斜距比例时分也图说并着于左如图甲乙为黄道丙乙为白道乙角为黄白交角实望时地影心在甲月心在丙食甚时地影心在丁月心在戊戊丁为食甚两心实相距与甲己等丙己为食甚距弧初亏时地影心在庚月心在辛辛戊为初亏至食甚之月实行庚丁为初亏至食甚之日实行与壬戊等辛壬为初亏至食甚日月两行之斜距与癸巳等即初亏距弧【理与食甚同】庚壬卽食甚两心实相距与甲己等庚辛为并径与甲癸等复圆时地影心在子月心在丑戊丑为食甚至复圆之月实行丁子为食甚至复圆之日实行与戊寅等寅丑为食甚至复圆日月两行之斜距与巳夘等即复圆距弧子寅即食甚两心实相距与甲己等子丑为并径与甲夘等辛壬庚癸己甲丑寅子夘巳甲为相等四股勾形若以地影心为不动以食甚影心丁防合于甲则月心戊防合于巳以初亏影心庚防合于甲则壬防合于巳而月心辛防合于癸以复圆影心子防合于甲则寅防合于巳而月心丑防合于夘初亏复圆距弧即与癸夘斜距合为一线矣故今求初亏复圆距弧即用癸己甲勾股形以己甲为勾癸甲为求得癸己股与巳卯等为初亏复圆距弧夫癸己与己夘二弧既皆为两经斜距则以二弧变时亦当与斜距为比例故以一小时两经斜距与一小时之比同于癸己或己夘初亏复圆距弧与初亏复圆距时之比也若食既生光则甲癸甲夘二线为月半径与影半径相减之较其法并与初亏复圆同
求日月实径与地径之比例【八十四】
从来算家谓日月之在天其实径原为一定之数而视径之大小则因距地有逺近而时时不同然所谓实径者仍以视径之大小距地之逺近比例而得今日月本天心之距地心数皆与旧不同则日月距地之逺近亦因之而各异且视径之大小古今所测相差惟在分秒之间在器只争毫厘而在数已差千百则实径究亦未有一定之数也新法算书载日实径为地径之五倍有余中距日天半径与地半径之比例为一与一千一百四十二月实径为地径百分之二十七强中距朔望时月天半径与地半径之比例为一与五十六又百分之七十二上编仍之以推最高日天半径与地半径之比例为一与一千一百六十二最卑日天半径与地半径之比例为一与一千一百二十一【今监臣戴进视径附】最高朔望时月天半径与地半径之比例为一与五十八又百分之一十六最卑
朔望时月天半径 【见日躔地半径差篇】与地半径之比例为一与五十【见交食日月距地与地半径之比例篇】四又百分之贤等据西人近年所测日天半径与地半径之比例最高为一与二万零九百七十五中距为一与二万零六百二十六最卑为一与二万零二百七十七月天半径与地半径之比例最高为一与六十三又百分之七十七中距为一与五十九又百分之七十八最卑为一与五十五又百分之七十九【详本编曰躔月离地半径差篇】又用逺镜仪【西人黙爵所制以逺镜加衡为窥管】测得日视径最高为三十一分四十秒中距为三十二分一十二秒最卑为三十二分四十五秒月视径最高为二十九分二十三秒中距为三十一分二十一秒最卑为三十三分三十六秒用此数推算日实径为地径之九十六倍又十分之六月实径为地径百分之二十七小余二六强夫月实径与旧大致相符而日实径差至十九倍者盖今所测日距地数比旧原大十八倍余则日实径比旧大十九倍止为大十八分之一故今之日视径亦比旧大十八分之一是则视径之大小固各得之实测要亦合诸推算以成一家之言至于日体纯阳其光恒溢于常径之外新法算书谓周围皆大一分今说谓大一十五秒故推日食之法必于并径内减去太阳光分一十五秒余与视纬相较方为受食之分而日之本径则仍带光分算其理固应尔也测算之法并见上编
求影半径及影差
地影半径之大小由于太阳距地有逺近及太隂距地有高卑故先以太阳在最高所生之大影为率求得太隂从高及卑所当地影之濶为影半径又以太阳从高及卑所生各影小于大影之较为影差与影半径相减乃为实影半径上编言之详矣【见地影半径篇】今以三角形之理考之日月两地半径差相并即与日半径影半径相并之数等而日月地半径差及日半径皆推交食所必用之数且又皆由距地之高卑逺近而生故近日西法皆不用另求影半径惟以日月两地半径差相加内减去日半径余即为实影半径以影差已在其中也此外又有视影之说盖以地上有气差能映小为大则太阳实径必小于视径实径小则影大矣又月食时日在地下气转蔽日光则地影视径必尤大于实径计其所大之分约为太隂地半径差六十九分之一故又以此为影差与实影半径相加为视影半径则所谓影差者名虽同而义实异也总之算家立说古今不必相同然测验皆期于合天而推步必归于有据旧说谓太阳有光分能侵地影使小今说谓地周有气能障地影使大此亦极不同之致矣然最大影半径旧为四十六分四十八秒今为四十六分五十一秒相差不过三秒最小影半径旧为四十二分三十八秒今为三十八分二十八秒相差四分有余盖地影之大小固由于太阳距地之逺近及太隂距地之高卑而太隂所闗为尤重查最卑太隂距地今昔相差不过百分地半径之九十五最高太隂距地则相差至百分地半径之五百六十一夫月之距地既因两心差而不同则月径与影径遂亦因之而各异要皆据一时之所测设法推步以求合而非为臆说也图说详着于左如图甲乙为地半径甲丙为日天半
径丙丁为日半径从丁切乙作光线与丙甲线交于戊甲戊为地影之长
甲己为月天半径庚己辛为月行所当地影之濶己甲辛角为影半径分【详上编地影半径篇】试观甲丁辛三角形丁辛
二内角与壬甲辛一外角等而丁角即太阳地半径差辛角即太隂地半径差【甲丁线畧与甲丙日天半径等甲辛线畧与甲巳月天半径等而其角皆与甲乙地半径相当故其角即为地半径差角】壬甲巳角与丙甲丁角为对角即日半径故以丁角太阳地半径差与辛角太隂
地半径差相加即得壬甲辛角内减日半径壬甲己角余己甲辛角即实影半径盖日月地半径差及日半径
既因日月距地之高卑逺近而时时不同故所得影半径即为本时之实影半径不复有影差也又气映小
为大丙丁为太阳视半径丙癸为太阳实半径从癸切乙作光线与丙甲线交于子则月行所当地影半径为己丑而己丑之分必大于己辛且地球外气之厚如乙寅从丁切寅作光线与丙甲线交于夘则月行所当
地影半径为己辰而己辰之分必尤大于己辛矣此辛辰之分当辛甲辰角约为甲辛乙角六十九分之一故又以此为影差与实影半径己甲辛角相加得己甲辰角为视影半径也