- 首页
- 子藏
- 算法
- 御制历象考成
御制历象考成
百五十五为甲角之余
检表得五十九度四十六
分一十六秒即甲角度与
半周相减余一百二十度
一十三分四十四秒即星
距夏至后赤道经度自夏
至未宫初度逆计之为卯
宫初度一十三分四十四
秒也如图甲乙与甲丙相
加得乙癸为总弧其正
为癸子余为子丑甲乙
与甲丙相减余乙寅为较
弧其正为寅卯余为
卯丑两余相加得卯子
【因两余在圜心之两边故相加】折半得
卯辰与巳午等为中数又
对甲角之乙丙边与乙未
等其正为未申余为
申丑正矢为乙申以乙申
与乙寅较弧之正矢乙卯
相减余卯申与酉戌等为
矢较遂成寅巳午与寅酉
戌同式两勾股形故巳午
与酉戌之比同于寅午与
寅戌之比又庚丑为半径
寅午为距等圈之半径寅
戌与庚亥两段同为甲丙
壬赤道经圈之所分则寅
午与寅戌之比原同于庚
丑与庚亥之比是以巳午
中数与矢较酉戌之比即
同于半径庚丑与甲角正
矢庚亥之比也既得庚亥
正矢与庚丑半径相减余
亥丑即甲角之余检表
即得甲角所当庚壬弧之
度也既得甲角则以对边
对角之法求之亦即得乙
角度矣此三边求角之法
也
设如大角星黄道经度距夏至一百零九度四十分赤道经度距夏至一百二十度一十三分四十四秒黄赤两过极经圈交角二十三度四十二分四十五秒求黄道纬度赤道纬度各几何
甲乙丙三角形甲为赤极
【即北极】乙为黄极甲乙为两
极距度丙为大角星丁戊
为黄道己庚为赤道丁辛
为黄道经度距夏至一百
零九度四十分即乙角己
壬为赤道经度距夏至一
百二十度一十三分四十
四秒即甲角之外角丙角
为甲壬乙辛两经圏交角
二十三度四十二分四十
五秒丙辛为黄道北纬度
乙丙为其余丙壬为赤道
北纬度甲丙为其余故用
甲乙丙三角形有甲乙丙
三角求乙丙甲丙二边乃
用次形法先求乙丙边将
甲乙丙形易为癸子丑次
形葢本形之甲角即次形
之子丑边【甲角当庚壬弧与子丑等】本
形乙角之外角即次形之
癸丑边【乙角之外角当戊辛弧与癸丑等】本形之丙角即次形之癸
子边【丙角当寅卯弧与癸子等】本形之
甲乙边即次形之丑角【丁己
弧与甲乙等即丑角度】本形之乙丙
边即次形之癸角【辛寅弧与乙丙
等即癸角度】本形之甲丙边即
次形子角之外角【壬卯弧与甲丙
等即子锐角度为癸子丑形子钝角之外角】故
用癸子丑三角形有三边
求癸角【即乙丙边】以夹癸角之
癸子边【即丙角】二十三度四
十二分四十五秒与癸丑
边【即乙外角】七十度二十分相
加得九十四度零二分四
十五秒为总弧其余七
十万五千五百四十四又
以癸子癸丑两边相减余
四十六度三十七分一十
五秒为较弧其余六百
八十六万八千二百三十
二两余相加【总弧过象限较弧不
过象限故两余相加】得七百五十
七万三千七百七十六折
半得三百七十八万六千
八百八十八为中数为一
率以对癸角之子丑边【即甲
角】五十九度四十六分一
十六秒之正矢四百九十
六万五千四百四十五与
较弧四十六度三十七分
一十五秒之正矢三百一
十三万一千七百六十八
相减余一百八十三万三
千六百七十七为矢较为
二率半径一千万为三率
求得四率四百八十四万
二千一百七十四为癸角
之正矢与半径一千万相
减余五百一十五万七千
八百二十六为癸角之余
检表得五十八度五十
七分即癸角度亦即乙丙
边度与象限相减余三十
一度零三分即黄道北之
纬度也既得乙丙边则以
对边对角之法求之即得
甲丙边矣
如先求甲丙边则用癸子
丑次形求子角【子角之外角当壬卯
弧与甲丙等】以夹子角之子丑
边【即甲角】五十九度四十六
分一十六秒与癸子边【即丙
角】二十三度四十二分四
十五秒相加得八十三度
二十九分零一秒为总弧
其余一百一十三万四
千八百七十四又以子丑
癸子两边相减余三十六
度零三分三十一秒为较
弧其余八百零八万四
千一百五十二两余相
减【总弧较弧俱不过象限故两余相减】余
六百九十四万九千二百
七十八折半得三百四十
七万四千六百三十九为
中数为一率以对子角之
癸丑边【即乙外角】七十度二十
分之正矢六百六十三万
四千五百二十五与较弧
三十六度零三分三十一
秒之正矢一百九十一万
五千八百四十八相减余
四百七十一万八千六百
七十七为矢较为二率半
径一千万为三率求得四
率一千三百五十八万零
三百三十七为子角之大
矢内减半径一千万余三
百五十八万零三百三十
七为子角之余检表得
六十九度零一分一十三
秒即子角之外角度亦即
甲丙边度与象限相减余
二十度五十八分四十七
秒即赤道北之纬度也既
得甲丙边则以对边对角
之法求之亦即得乙丙边
矣此三角求边之法也
设如土星黄道经度卯宫二度二十九分距夏至一百二十二度二十九分黄道南纬度二度三十七分黄极赤极相距二十三度三十分求赤道经度纬度各几何
甲乙丙三角形甲为赤极
【即北极】乙为黄极甲乙相距
二十三度三十分丙为土
星丁戊为赤道己庚为黄
道己辛为黄道经度距夏
至一百二十二度二十九
分即乙角丙辛为黄道南
纬度二度三十七分乙丙
为星距黄极九十二度三
十七分丙壬为赤道南纬
度甲丙即星距北极度丁
壬为距夏至赤道经度即
甲角之外角故用甲乙丙
三角形有乙角及甲乙乙
丙二边求甲丙边及甲角
先求甲丙边以半径一千
万为一率乙角一百二十
二度二十九分之大矢一
千五百三十七万零五百
四十二为二率以夹乙角
之甲乙边二十三度三十
分与乙丙边九十二度三
十七分相加得一百一十
六度零七分为总弧其余
四百四十万二千零四
又以甲乙乙丙两边相减
余六十九度零七分为较
弧其余三百五十六万
四千六百六十二两余
相加【总弧过象限较弧不过象限故两余相
加】得七百九十六万六千
六百六十六折半得三百
九十八万三千三百三十
三为中数为三率求得四
率六百一十二万二千五
百九十九为矢较与较弧
六十九度零七分之正矢
六百四十三万五千三百
三十八相加得一千二百
五十五万七千九百三十
七为甲丙对边之大矢【凡矢
度过于半径者为大矢其弧即为过弧】内减
半径一千万余二百五十
五万七千九百三十七为
甲丙边之余检表得七
十五度一十分四十六秒
与半周相减余一百零四
度四十九分一十四秒即
甲丙边之度内减九十度
余一十四度四十九分一
十四秒为赤道南之纬度
也如图己癸为半径己子
为甲角之大矢甲乙与乙
丙相加【乙丙与乙丑乙卯皆相等】得甲
丑为总弧其正为丑寅
余为寅癸甲乙与乙丙
相减余甲卯为较弧其正
为卯辰余为辰癸两
余相加得辰寅折半得
辰巳与午未等为中数又
对乙角之甲丙边与甲申
等其正为申酉余为
酉癸大矢为甲酉以甲酉
与甲卯较弧之正矢甲辰
相减余辰酉与戌亥等为
矢较遂成卯午未与卯戌
亥同式两勾股形而卯未
与卯亥之比同于午未与
戌亥之比又卯未为丑卯
距等圈之半径卯亥与巳
子两段同为乙辛丙黄道
经圈之所分则卯未与卯
亥之比原同于己癸与己
子之比是以半径己癸与
乙角大矢己子之比即同
于中数午未与矢较戌亥
之比也既得戌亥矢较与
甲卯较弧之正矢甲辰相
加得甲酉即为甲丙弧之
大矢内减甲癸半径余酉
癸为甲丙弧之余亦即
丙干弧之余检表得丙
干弧之度故与半周相减
始为甲丙弧之度也次求
甲角则以甲丙弧一百零
四度四十九分一十四秒
之正九百六十六万七
千三百一十六为一率乙
丙弧九十二度三十七分
之正九百九十八万九
千五百七十三为二率乙
角一百二十二度二十九
分之正八百四十三万
五千四百七十七为三率
求得四率八百七十一万
六千六百七十一为甲角
之正检表得六十度三
十九分一十秒即甲角之
度与半周相减余一百一
十九度二十分五十秒即
星距夏至赤道经度自夏
至未宫初度逆计之为辰
宫二十九度二十分五十
秒也
又法将乙丙弧引长至丁
自甲作甲丁垂弧补成甲
丁乙甲丁丙两正弧三角
形先求甲丁乙形以丁角
正即半径一千万为一
率乙外角五十七度三十
一分之正八百四十三
万五千四百七十七为二
率甲乙弧二十三度三十
分之正三百九十八万
七千四百九十一为三率
求得四率三百三十六万
三千六百三十八为甲丁
弧之正检表得一十九
度三十九分二十秒即甲
丁弧之度也【此即正弧三角形有黄赤
交角有黄道求距纬之法】又以半径一
千万为一率乙外角五十
七度三十一分之余五
百三十七万零五百四十
二为二率甲乙二十三度
三十分之正切四百三十
四万八千一百二十四为
三率求得四率二百三十
三万五千一百七十八为
乙丁弧之正切检表得一
十三度零八分三十八秒
即乙丁弧之度也【此即正弧三角
形有黄赤交角有黄道求赤道之法】次求甲
丁丙形以半径一千万为
一率乙丙弧九十二度三
十七分与乙丁弧一十三
度零八分三十八秒相加
得丙丁弧一百零五度四
十五分三十八秒其余
二百七十一万六千一百
七十八为二率甲丁弧一
十九度三十九分二十秒
之余九百四十一万七
千三百一十八为三率求
得四率二百五十五万七
千九百一十一为甲丙弧
之余检表得七十五度
一十分四十六秒与半周
相减余一百零四度四十
九分一十四秒即甲丙边
之度也【此即正弧三角形有赤道有距纬求
黄道之法】既得甲丙边则以对
边对角之法求之即得甲
角矣此两边夹一角之法
也
设如土星黄道经度卯宫二度二十九分距夏至一百二十二度二十九分赤道经度辰宫二十九度二十分五十秒距夏至一百一十九度二十分五十秒黄极赤极相距二十三度三十分求黄道纬度赤道纬度各几何
甲乙丙三角形甲为赤极
【即北极】乙为黄极甲乙相距
二十三度三十分丙为土
星丁戊为赤道己庚为黄
道己辛为黄道经度距夏
至一百二十二度二十九
分即乙角丁壬为赤道经
度距夏至一百一十九度
二十分五十秒即甲角之
外角丙辛为黄道南纬度
乙丙为星距黄极度丙壬
为赤道南纬度甲丙为星
距赤极度故用甲乙丙三
角形有甲乙二角及甲乙
边求甲丙乙丙二边乃用
次形法先求丙角将甲乙
丙形易为癸子丑次形葢
本形之甲角即次形之子
丑边【甲角当壬戊弧与子丑等】本形乙
角之外角即次形之癸丑
边【乙外角当辛庚弧与癸丑等】本形之
丙角即次形之癸子边【丙角
当寅卯弧与癸子等】本形之甲乙边
即次形之丑角【丁己与甲乙等即丑
角度】本形之乙丙边与半周
相减之余度即次形癸角
之外角【乙丙边与半周相减余丙辰与卯辛
等即辛癸卯角为癸子丑形癸角之外角葢卯丙与
辛辰皆象限各减辛丙故卯辛与丙辰等】本形
之甲丙边与半周相减之
余度即次形之子角【甲丙边与】
【半周相减余丙巳与寅壬等即子角度葢寅丙与壬
巳皆象限各减壬丙故壬寅与丙巳等】故用
癸子丑三角形有丑角及
癸丑子丑二边求癸子边
【即丙角】以半径一千万为一
率丑角二十三度三十分
之正矢八十二万九千三
百九十九为二率以癸丑
边【即乙外角】五十七度三十一
分与子丑边【即甲角】六十度
三十九分一十秒相加得
一百一十八度一十分一
十秒为总弧其余四百
七十二万零八百零七又
以癸丑子丑两边相减余
三度零八分一十秒为较
弧其余九百九十八万
五千零二十四两余相
加得一千四百七十万五
千八百三十一折半得七
百三十五万二千九百一
十五为中数为三率求得
四率六十万九千八百五