- 首页
- 子藏
- 算法
- 御制历象考成
御制历象考成
秒与丁己半周相减余癸
己九十八度一十七分一
十二秒即乙角丙壬为太
阳距赤道纬度与甲壬象
限相减余甲丙边为太阳
距北极度故用甲乙丙三
角形有甲乙二角及乙丙
边求甲丙边以甲角六十
度为对所知之角其正
八百六十六万零二百五
十四为一率乙角九十八
度一十七分一十二秒为
对所求之角其正九百
八十九万五千五百九十
三为二率乙丙五十八度
为所知之边其正八百
四十八万零四百八十一
为三率求得四率九百六
十九万零一百七十六为
所求甲丙边之正检表
得七十五度四十二分零
一秒即甲丙弧之度与九
十度相减余一十四度一
十七分五十九秒即太阳
距赤道北之纬度也此法
用边角相比例与直线三
角形同但直线三角形以
角之正与边相比【见数理精
蕴第十七卷】此以角之正与
边之正相比其比例之
理一也又以正弧之理明
之试将甲乙弧引长至丁
自丙角作丙丁垂弧则成
甲丁丙乙丁丙两正弧三
角形先求乙丁丙形丁角
正【即半径】为一率乙角正
为二率乙丙正为三
率丙丁正为四率此第
一比例也次求甲丁丙形
甲角正为一率丁角正
【即半径】为二率丙丁正
为三率甲丙正为四率
此第二比例也然第二比
例之二率三率即第一比
例之一率四率而二率三
率相乘与一率四率相乘
之数等故用第一比例之
二率三率而用第二比例
之一率即得第二比例之
四率此有对角求对边之
法也
设如太阳距赤道北一十四度一十七分五十九秒测得髙弧三十二度地平经度偏西八十一度四十二分四十八秒求系何时刻
甲乙丙三角形甲为北极
乙为天顶丙为太阳丙壬
为太阳距赤道北一十四
度一十七分五十九秒甲
丙即为太阳距北极七十
五度四十二分零一秒丙
癸为太阳髙三十二度乙
丙即为太阳距天顶五十
八度丁癸为地平经度偏
西八十一度四十二分四
十八秒癸己为九十八度
一十七分一十二秒即乙
角庚壬为太阳距午正赤
道度即甲角故用甲乙丙
三角形有乙角及甲丙乙
丙二边求甲角以甲丙七
十五度四十二分零一秒
为对所知之边其正九
百六十九万零一百七十
六为一率乙丙五十八度
为对所求之边其正八
百四十八万零四百八十
一为二率乙角九十八度
一十七分一十二秒为所
知之角其正九百八十
九万五千五百九十三为
三率求得四率八百六十
六万零二百五十四为所
求甲角之正检表得六
十度即甲角度以六十度
变得二时从午正初刻后
计之【因偏西故为午正后】为申正初
刻也此有对边求对角之
法也
设如北极出地四十度申正初刻测得太阳髙三十二度求太阳距赤道纬度及地平经度各几何
甲乙丙三角形甲为北极
乙为天顶丙为太阳甲己
为北极出地四十度甲乙
即为北极距天顶五十度
庚壬为申正初刻距午正
赤道六十度即甲角丙癸
为太阳髙三十二度乙丙
即为太阳距天顶五十八
度丙壬为太阳距赤道纬
度甲丙为其余丁癸为地
平经度即乙角之外角【甲乙
丙形之乙角当癸己弧其癸乙丁外角即当丁癸弧】故用甲乙丙三角形有甲
角及甲乙乙丙二边求甲
丙边及乙角乃自乙角作
乙丁垂弧分为甲乙丁丙
乙丁两正弧三角形先求
甲乙丁形以丁角正即
半径一千万为一率甲角
六十度之正八百六十
六万零二百五十四为二
率甲乙五十度之正七
百六十六万零四百四十
四为三率求得四率六百
六十三万四千一百三十
九为乙丁弧之正检表
得四十一度三十三分三
十九秒即乙丁弧之度也
【此即正弧三角形有黄赤交角有黄道求距纬之法
葢甲角即如黄赤交角甲乙即如黄道甲丁即如赤
道乙丁即如距纬】又以半径一千
万为一率甲角六十度之
余五百万为二率甲乙
五十度之正切一千一百
九十一万七千五百三十
六为三率求得四率五百
九十五万八千七百六十
八为甲丁弧之正切检表
得三十度四十七分二十
三秒即甲丁弧之度也【此即
正弧三角形有黄赤交角有黄道求赤道之法】又
以甲乙五十度之正七
百六十六万零四百四十
四为一率甲丁三十度四
十七分二十三秒之正
五百一十一万八千八百
八十八为二率丁角正
即半径一千万为三率求
得四率六百六十八万二
千二百三十四为乙分角
之正检表得四十一度
五十五分四十八秒即乙
分角之度也【此即正弧三角形有黄道
有赤道求黄道交极圏角之法】次求乙丙
丁形以乙丁四十一度三
十三分三十九秒之余
七百四十八万二千五百
二十六为一率乙丙五十
八度之余五百二十九
万九千一百九十三为二
率半径一千万为三率求
得四率七百零八万二千
零九十一为丙丁弧之余
检表得四十四度五十
四分三十八秒即丙丁弧
之度也【此即正弧三角形有黄道有距纬求
赤道之法葢丙角即如黄赤交角乙丙即如黄道丙
丁即如赤道乙丁即如距纬】又以乙丙
五十八度之正八百四
十八万零四百八十一为
一率丙丁四十四度五十
四分三十八秒之正七
百零六万零二十七为二
率丁角正即半径一千
万为三率求得四率八百
三十二万五千零三十为
乙分角之正检表得五
十六度二十一分二十四
秒即乙分角之度也【此即正弧
三角形有黄道有距纬求黄赤交角之法葢乙分角
即如黄赤交角乙丙即如黄道乙丁即如赤道丙丁
即如距纬】乃以甲丁丙丁相并
得甲丙七十五度四十二
分零一秒即太阳距北极
度与九十度相减余一十
四度一十七分五十九秒
即太阳距赤道北之纬度
【如甲丙大于九十度则减去九十度余为太阳距赤】
【道南之纬度】以两乙分角相并
得九十八度一十七分一
十二秒与一百八十度相
减余八十一度四十二分
四十八秒即太阳距午正
偏西之地平经度也此作
垂弧于形内之法也
设如申正初刻测得太阳髙三十二度地平经度偏西八十一度四十二分四十八秒求北极出地度几何
甲乙丙三角形甲为北极
乙为天顶丙为太阳丙癸
为太阳髙三十二度乙丙
即为太阳距天顶五十八
度庚壬为申正初刻距午
正赤道六十度即甲角丁
癸为地平经度偏西八十
一度四十二分四十八秒
即乙角之外角甲己为北
极出地度甲乙为其余故
用甲乙丙三角形有甲乙
二角及乙丙边求甲乙边
乃自丙角作丙丁垂弧补
成甲丙丁乙丙丁两正弧
三角形先求乙丙丁形以
丁角正即半径一千万
为一率乙角九十八度一
十七分一十二秒之正
九百八十九万五千五百
九十三为二率乙丙五十
八度之正八百四十八
万零四百八十一为三率
求得四率八百三十九万
一千九百三十九为丙丁
弧之正检表得五十七
度零三分一十八秒即丙
丁弧之度也【此即正弧三角形有黄赤
交角有黄道求距纬之法葢乙角即如黄赤交角乙
丙即如黄道乙丁即如赤道丙丁即如距纬】又
以半径一千万为一率乙
角九十八度一十七分一
十二秒之余一百四十
四万一千二百六十为二
率乙丙五十八度之正切
一千六百万零三千三百
四十五为三率求得四率
二百三十万六千四百九
十八为乙丁弧之正切检
表得一十二度五十九分
一十七秒即乙丁弧之度
也【此即正弧三角形有黄赤交角有黄道求赤道
之法】次求甲丙丁形以甲角
六十度之正切一千七百
三十二万零五百零八为
一率半径一千万为二率
丙丁五十七度零三分一
十八秒之正切一千五百
四十三万一千零五十九
为三率求得四率八百九
十万九千一百二十六为
甲丁弧之正检表得六
十二度五十九分一十七
秒即甲丁弧之度也【此即正弧
三角形有黄赤交角有距纬求赤道之法葢甲角即
如黄赤交角甲丙即如黄道甲丁即如赤道丙丁即
如距纬】乃以甲丁与乙丁相
减余甲乙五十度即北极
距天顶又与九十度相减
余四十度即北极出地度
也【若求丙角则求得丙总角与丙虚角相减即得】此作垂弧于形外之法也
设如大角星黄道纬北三十一度零三分赤道纬北二十度五十八分四十七秒黄极赤极【即北极】相距二十三度三十分求黄道经度赤道经度各几何
甲乙丙三角形甲为赤极
【即北极】乙为黄极甲乙相距
二十三度三十分丙为大
角星丁戊为黄道己庚为
赤道丙辛为黄道纬北三
十一度零三分乙丙即为
星距黄极五十八度五十
七分丙壬为赤道纬北二
十度五十八分四十七秒
甲丙即为星距赤极六十
九度零一分一十三秒丁
辛为星距夏至后黄道经
度即乙角己壬为星距夏
至后赤道经度即甲角之
外角故用甲乙丙三角形
有甲乙甲丙乙丙三边求
甲乙二角先求乙角则以
夹乙角之甲乙边二十三
度三十分与乙丙边五十
八度五十七分相加得八
十二度二十七分为总弧
其余一百三十一万三
千九百一十三又以甲乙
乙丙两边相减余三十五
度二十七分为较弧其余
八百一十四万六千二
百二十两余相减【总弧较弧
俱不过象限或俱过象限则两余相减若一过象
限一不过象限则两余相加其或过二象限者与
过一象限同过三象限者与不过象限同】余六
百八十三万二千三百零
七折半得三百四十一万
六千一百五十四为中数
为一率以对乙角之甲丙
边六十九度零一分一十
三秒之正矢六百四十一
万九千六百二十五【余与半
径相减得矢度】与较弧三十五度
二十七分之正矢一百八
十五万三千七百八十相
减余四百五十六万五千
八百四十五为矢较为二
率半径一千万为三率求
得四率一千三百三十六
万五千四百五十四为乙
角之大矢【凡矢度过于半径者为大矢其
角即为钝角】内减半径一千万
余三百三十六万五千四
百五十四为乙角之余
检表得七十度二十分与
半周相减余一百零九度
四十分为乙角度即星距
夏至后黄道经度自夏至
未宫初度逆计之为卯宫
一十九度四十分也如图
甲乙与乙丙相加得甲癸
为总弧【乙丙乙癸乙子三弧同为癸子距等
圈所截故其度相等】其正为癸丑
余为丑寅甲乙与乙丙
相减余甲子为较弧其正
为子卯余为卯寅以
丑寅与卯寅两余相减
余卯丑折半得卯辰与巳
午等为中数又对乙角之
甲丙边与甲未等其正
为未申余为申寅正矢
为甲申以甲申与甲子较
弧之正矢甲卯相减余卯
申与酉戌等为矢较遂成
子酉戌与子巳午同式两
勾股形故巳午与酉戌之
比必同于子午与子戌之
比也又丁寅为半径子午
为距等圈之半径子戌与
丁亥两段同为乙丙辛黄
道经圈之所分则子午与
子戌之比原同于丁寅与
丁亥之比是以中数己午
与矢较酉戌之比即同于
半径丁寅与乙角大矢丁
亥之比也既得丁亥大矢
内减丁寅半径余寅亥即
乙外角之余检表得乙
外角所当辛戊弧之度复
与半周相减即得乙角所
当丁辛弧之度也既得乙
角则以对边对角之法求
之即得甲角度矣
如先求甲角则以夹甲角
之甲乙边二十三度三十
分与甲丙边六十九度零
一分一十三秒相加得九
十二度三十一分一十三
秒为总弧其余四十三
万九千七百二十九又以
甲乙甲丙两边相减余四
十五度三十一分一十三
秒为较弧其余七百万
零六千五百六十八两余
相加【总弧过象限较弧不过象限故两余
相加】得七百四十四万六
千二百九十七折半得三
百七十二万三千一百四
十八为中数为一率以对
甲角之乙丙边五十八度
五十七分之正矢四百八
十四万二千一百四十一
与较弧四十五度三十一
分一十三秒之正矢二百
九十九万三千四百三十
二相减余一百八十四万
八千七百零九为矢较为
二率半径一千万为三率
求得四率四百九十六万
五千四百四十五为甲角
之正矢与半径一千万相
减余五百零三万四千五