同文算指

  递加法第九
  数始于微积于钜渐加渐赜览之茫如然有定数可推如人数物数有分有总但知一隅亦可例推也为立法如左





















  右超位加各审其母如超一超二超三四之类各以所超为母其间少者易知多者难定大率以退位减之余数即母
  凡超位数截取三位较之其前后二位数必倍于中位数


  若截四位较之则前后二位与中二位数等

  以上皆取位置匀列超母相同者论之虽所超多位如超五超六至千万位但同超母者截取前后逺数相并较其进内挨身两位相并其数皆等




  右凡加数以求总积之实不论累加超加及超二超三等但系递加者只除首位单一不用外取次位与末位数并为实其中间亦不拘防位但察自前至后布位之数为法乘之所得之数皆倍各位实积之数以减半得总数如右式以前四后三十七并之共四十一数系一十二位以一十二乘四十一得四百九十二减半为二百四十六即其十二位之全数若以前四后十六并之共二十数系五位乘得一百减半得五十即五位全数也【如欲连首位算则再加一云】
  此超八
  递加者
  右式假如方箭一束外周六十四枝问中积数防何者凡方物必以八包一每层超八递加今置中心一枝不算【即首位之一】以内层之八并外周六十四共七十二以八位乘之得数【五百七十六】减半得八位之总数加中心之一为二百八十九枝凡平方面有中心之一者仿此
  此超六递加者

  右式假如圆箭一束外周三十六枝问中积者凡圆物必以六包一每层以六递加今置中心一枝不算外以内层之六并外周三十六共四十二以六位乘之得数【二百五十二】减半得六位之总数再加中心之一为一百二十七枝凡平圆面仿此
  此超九
  递加者
  右式假如有三棱物一束外周七十二枝问积者凡三棱物必以外九包中一每层超九递加置中心一枝不算外以内层之九并外周七十二共八十一以八位乘之得数【六百四十八】减半得八位之总数再加中一为三百二十五枝凡三棱面者仿此
  若顺数而加自一而二而三而四以递相加者另是一法但取最后二大数相乘得数亦以减半即得最后第二位以至首位之数惟余最后第一位在外又并入得全数



  右式假如有物倚墙一面尖堆最下一行濶十五枚问总积若干取最下二行【一十五一十四】相乘得数【二百一十】减半【一百○五】又加入下行十五得一百二十枚合总
  一法取下行加一为法以乘下行得数减半亦同
  若首位不系一数而自二数或三或四为首者并首尾二位为实而以首位数减尾位数其余数加一为法乘之减半合总
  假如有物倚墙一面平堆下濶十四枚上濶四枚问总积者并首尾二位得一十八为实就尾位减首位得一十外加一共一十一乘之葢原系十一位也以乘得数【一百九十八】减半得九十九枚合总
  又假如众人醵钱首位出八文末位出六十文问总数总人者以首位减末位余五十二外加一系五十三位乃并首尾二位钱数以乘五十三得三千六百四文合总
  若自一而三而九俱以阳数超加者但看位数以自乘得全数

  此皆阳位但据位数自乘如系一十位自乘得一百之类其阳数超加已知首尾两位之数而未知中间若干位者但取尾位之数外加一以减半得位数如右式尾位十九加一得二十减半则十位也但系阳数虽至百千万位皆同此法
  若自二而四而六俱以阴数超加者取最后一位之数减半即得位数再以减半数外加一而与位数相乘即得自首至尾全数


  四 取二十四减半见位数又减半加一为十三二 以乘位数十二得一百五十六见全数
  又若自二数起递加至一百数止但取一百减半知是共五十位再加一为五十一以乘位数五十得二千五百五十即五十位之全数
  若多中起数超位递加但知位数及首位数及所超母数而未知最后一位数者但审布位若干于内减一以乘超母【如超一则一为母超八则八为母之类】得数加入首位数即得尾位之数既得首尾二位乃照前首尾相并而以位乘减半得全数


  此超八递加者计十位减一为九与八相乘得七十二再加首位三得七十五为末位数又以七十五加三得七十八以乘十位得七百八十减半三百九十合全数
  假如有牛四十区但云第一区是三十头余区递加二十头今问第四十区防头依前法就四十减一为三十九与超母二十相乘得七百八十再加首区三十知是八百一十乃最后一区之数也再问各区总数防何照法以首区三十加末区共八百四十以乘区数四十得三万三千六百减半得一万六千八百头为各总数若但知末区数及母数位数而不知首区数者照前以区数减一与母数相乘得数而以末区数减之即得首区之数【如前乘得七百八十而末区系八百一十相差三十即知首区系三十头】



  假如发兵破一贼巢有二十人先登以登城先后叙赏其第二十人赏银一百两第十九人赏一百三十两其余递加三十两问第一人该银防何此以二十为位减一为十九以乘超母三十得五百七十再加尾位一百得六百七十两为第一人所赏之数也若问此二十人共银几何照法并首尾二数得七百七十与位数二十相乘减半得七千七百两见全数
  若但举总数及超数及首尾共数而不知系几位亦不知首尾二位数各若干者以总数为实以首尾数减半为法除之得位数又以位数减一乘超母得数即用此数为主若
  以并首尾共数减其半即尾数若
  以较首尾共数减其半即首数
  右式假如贷钱起息每日増钱六文共积子母钱三百二十文不言每日细数但云并初末日共钱一百六十文问初末日各防文其起息计几日者以日为位立总钱三百二十为实并初末减半得八十除之得四日依法减一为三乘増母之六得一十八以并初末数得一百七十八减半是末数若以较初末数余一百四十二减半是初数
  若但举中积及位数及首尾之较若干以求首尾各防何者倍中积为实以位为法除之得数以较减之半其余得首数乃以较加之得尾数



  右假如织布自冬至始厯十三日共织一千三百五十二寸因晷渐长其功日加六寸末日视首日多织七十二寸问首日末日各织防许者倍中积得二千七百四寸为实以积日十三为法除之得二百零八以较减之得数又减半合首数六十八以较并入亦减半合末数一百四十
  若但知位数总数及超母数而未知每位得若干数者取位数列之去尾数余并之【如系九位则但用一二三四五六七八共三十六数除九不用】以乘超母得数减总乃以位数归其余得首位数乃以超母递加得各位细数


  假如兄弟九人递差三嵗共二百○七嵗欲知每人防何者照右法置母数【三】乃取位数内除去尾数九只以八位细数并之得三十六以乘母得数【一百零八】以减总数余九十九以九除之得最幼一人嵗数【一十一】乃以三递加之得诸人嵗数
  共八位以一十
  七为超母总数
  九百九十六
  假如钞九百九十六锭分给八人递差一十七锭各若干取位数除去尾八并自一至七之数共二十八以乘超母一十七得数【四百七十六】以减总余五百二十以八除得最少一人数【六十五】仍以一十七递加得诸人数若超位递加但知系防位及各位总数而未知超母防位亦未知各位细数与首尾二位数第云前防位共若干后防位共若干以求各位细数者依母子互乘法求之以所知前防位后防位为母以前共若干后共若干为子互乘得数相较为实又并其母减半以较总位余若干而以两母相乘之数乘之得数为法以法除实得超母加入所知之数如系二位者加入折半得多者数如系三位者加入三归得中数乃依超母递加递减得全数


  假如八人差等分钱但知甲乙共七十七文己庚辛共六十六文问每人防文者以二人乘六十六【得一百三十二】以三人乘七十七【得二百三十一】以相较余九十九为实并分母【二三】得五减半得二零二之一以减总位【八】余五零二之一仍以分母所乘之六乘之得三十三为法以法除实得三为超母之数并入甲乙减半得四十为甲衰若求己庚辛则三归之得中间之庚衰乃以超母递加递减得全数○外如系戊己庚辛四位者三归之得己庚共数又加减超母之半得己庚数
  倍加法第十
  数有挨次递加者以一数为递母而絫加之其母不易焉另有以倍而加者












  右法皆取乘法如第一式倍一加者以二一见二以二二见四以二四见八以二八见十六也第三式倍一加者以二三见六以二六见十二也第二式倍三加者以三三见九以三九见二十七以三个二十七见八十一也此由少进多之法假如欲寻其母则取挨身小数减其大数知之以二减尽者倍一也以三减尽者倍二也凡挨次递加者由少加多其多至于无穷葢凡数从多减少其减至于单数而止无复零分之可减也惟此倍加之数则进而加之无穷减而约之亦无穷剖之又剖细微毫忽按法而约求焉岂可以数尽乎


  此以倍一约之其数无穷余法皆同
  右数假如截取三位以首尾二位相乘其所得数与中一位数之自乘者等【假如八四二共三位以二八相乘得十六以中间之四自乘亦十六】若截取四位而以首尾二位相乘其所得数与中二数相乘者亦等【假如十六○八○四○二○共四位以十六乗二得卅二以中间之八与四乘亦得卅二】虽至许多位但以首尾二位相乘其所得数与挨身次二位俱相等步步乘入皆无不同至于最中若有单位以之自乘亦复如是
  此外乘与进
  内乘皆同中
  单自乘亦同
  凡倍加之数不论防位欲知总数但取首尾二位为主以首最小数减尾最大数而以其所剰大数依后法求之如系加一倍者【即二因】先取尾大数倍之内减首数得全数如一二四八【六二四一三六】此七位者取尾六十四倍得一百二十八数减首位一得一百二十七即此七位之细数【加一倍者自一起手用此法其加二加三者虽亦自一起手但各另有倍母则另如后法以倍母为首位不以一为首位云】如系加二倍者【即三因法】取尾后最多数内先减首位之数而以余数二归【縁三因者系加二倍故以二为倍母而用二】取其所得之数并入尾位大数即得中间防位细数凡四因五因以至六七等类皆同此法而四因三归五因四归【各减因数之一者依所倍之数为母也】余皆同
  此系四因者三
  倍于本数以相
  加也用尾位数
  内减首位数实
  剰四万九千一
  百四十九以倍母之三除之得一万六千三百八十三加入四万九千一百五十二共得六万五千五百三十五是八位全数
  又有加一倍又二之一递进者即四六衰分法也
  此一因半


  右四六衰分倍加系一因有半者若欲求其各位总数亦取尾位数【四十五又十六之九】内减首位数【除四得四十一又十六之九】如前法亦减除法一数【十一因半减其一也如前三因者用二及四因用三之类】而用半以除之【以半为倍母以除之者是一化为二】得八十三零八之一以并尾数总共得一百二十八零十六分之十一也为七位细数
  凡二因半三因半等类仿此其除法俱只减其一数凡倍加数不论共有防位但就中抽取一位自乘但看自首挨来是防位假如第五位其前有四位矣今以五位自乘其所得之数即与此后第四位之数相同【即九位】不特此也又如取第五位与第七位相乘其五位前凡有四位则其第七位后亦管四位其五位七位乘得之数即与第十一位之数相同如后式
  假如后式十六系第五位前有四位后亦管到四位今以十六自乘得二百五十六恰与后四位之数相同


  又假如三十二系第六位前有五位
  今以三十二自乘得一千二十四即合后第五位之数一又假如八系第四位与七位之六十四相乘以八前凡有三位则六十四之后亦管到三位今以八乘六十四得五百十二数亦与第十位之数相合其相离亦三位故也又法不必算其前后之位但看所自乘数为第防位以本位数加一倍内减一即得同数之位假如第六位倍六得十二内减一为十一位则第六位自乘所得之数正合第十一之数与前法理同而更为捷径
  又法不必减一但先排倍数于右次排位数于左相对而于位前加一【即以○见所减之一】其余以次察之





  凡所得位数但系自乘者只一位以位数倍之但系互乘者有两位以两位数积之
  右式假如以四自乘得十六矣其四之本位是二位倍二得四则十六之数即第四位之数也此一位自乘之法又假如八乘三十二得二百五十六数其八之本位系三位三十二之本位系五位三与五并共得八即系第八位数  以上乃首位起一者
  若首位非自一起【如二或三或四五之类】则自乘互乘皆先取首位之数分之【如首位四则以四分其所得】而后倍位积位如前法





  假如以八十自乘得六千四百因首位非从一起而从五起先以首位之五而分之得一千二百八十数仍取列位之四倍之为八则对八之数
  又假如以四十与六百四十相乘得二万五千六百以首位之五分之得五千一百二十次以两位相积其一是三其一是七合对十之数
  凡倍一加者【即二因】就中随意截取一位以其本数减一即合此位以前各位之细数此除本身而言然必从一数起者合此




  假如截取一百二十八数内减一得一百二十七数即合第六位以前之总数葢自六位之六十四以前各位细数总得此
  又假如右式以对八位之二百五十六数而求本位以前各位之总依前法以次位求之次位减一得五百一十一乃对八以前各位细总也若就以此八位为主外加一作五百一十二以自乘得二十六万二千一百四十四数内再减一此何数乎按实对八之位乃系第九位此前既有九位此后亦管九位乃是第十八位以前各位细数也葢以倍位所对之本数自乘则得对位加倍之本数此用倍位法看之如不以本数乘而以积出本位以前诸位之全数乘则又推得本位以后相对若千位之全数此则不用倍位而用实位得之者实位者如本位前实有九位则本位后再管十位即其相对之位之全数也须减一数始合不减一数则进越一位矣