皇朝经世文三编


  今有台六百 九十七尺长对面有敌国兵船从此头视之成角八十四度四十分从彼头 视之成角八十六度三十分求船距二处及台与船最近之处相距各若 干        
杨枢

   答曰船距此 头四千五百三十一又距彼头四千五百一十九尺台与船最近之处相 距四千五百十一尺

* 图略

先求乙角法以丙角 八十四度四十分与丁角八十六度三十分相并以减半周一百八十度余 八度五十分为乙角度数

次求乙丁边

 一率 乙角正弦 九 一八六二八
 二率 丙丁边  二八四三二三
 三率 丙角正弦 九九九八一一
 四率 乙丁边  三六五五 六

   检表得乙丁 边四千五百一十九尺
   次求乙丙边

 一率 乙角正弦 九 一八六二八
 二率 丙丁边  二八四三二三
 三率 丁角正弦 九九九九一八
 四率 乙丙边  三六五六一三
   检表得乙丙边四千五百三十一尺
   末求乙戊中垂线
 一率 半径 一0000000
 二率 丙角正弦 九九九八一一
 三率 乙丙边  三六五六一九
 四率 乙戊垂线 三六五四三0

   检表得四千 五百一十一尺即台与船相距最近之处

  今有兄弟三家 欲掘井使距各家维均甲乙相距二十丈乙丙二十二丈丙甲二十四丈试 推其井应在何处与距各家之远近若何            
左秉隆

   答曰井与各 家相距十二丈五尺有奇

* 图略

如图以甲丙为一率 甲乙乙丙和为二率甲乙乙丙较为三率求得四率为底边较三丈五尺与 甲丙相减半之为句以甲乙为弦求得股十七丈四尺余为甲乙丙三角形 之中垂线次以中垂线为一率甲乙为二率乙丙为[三]率 求得四率二十五丈有奇为圆径半之为井与各家相距数

  今有弧矢田试 作一界线平分为二分    
杜法孟

* 图略

如图丙乙甲弧矢田 先作乙甲直线自乙甲弧折半丁点至壬作丁壬小矢自壬至丙作壬丙线 以丁壬丙[为 界](乙)即 分弧矢田为两平分

解曰丁壬甲等于丁 壬乙自壬与乙丙平行作壬戊线与甲丙平行作壬辛线则成壬戊甲壬戊 丙辛壬乙辛壬丙四句股形等式等积甲壬丙乙壬丙皆得二句股积故等

又解曰丁壬甲等于 丁壬乙甲壬丙乙壬丙二三角形其底等甲壬 等于乙壬其高又 等 同以壬丙为高 故其积等

  弧矢形内求任 作相切二圆其心俱在弧背其周俱切弦其法若何        
杨兆鋆

* 图略

法自大圆心作心甲 半径取甲点作戊辛之垂线甲丙以甲为心甲乙为度作圆 乙即甲圆周切弦之一点 引长甲丙线至丁作丁甲 半径 甲即甲圆心切弦之一点 自丁至戊作丁戊线割甲 圆周于己即二圆切点乃作甲己线引长至弧背得庚点即为庚圆心以庚 己为度作圆其切弦点为壬即丁戊线交弦之点也

  三角内求作相 等相切六圆        
懿善

* 图略

平分三边形之三边 于一二三作乙一丙 二甲三三中垂线相交于丁平分丁甲一 角作分角线遇丁一线于子以丁为心以丁子为度度于二三两线遇于丑与寅则丑子寅为所求之三圆心而子一为其半径若过 子点作线与甲丙边平行遇甲三丙二两 线于卯辰又自卯与辰各作线与甲乙乙丙两线平行则得又三圆心

  有长椭圆体及 圆锥体椭圆短径等于锥之底径长径等于锥高此二体和即等径等高之 圆柱试解其理           
蔡锡勇

* 图略

如图甲乙丙丁为圆 柱积其长甲乙 戊己丙丁并同 即戊己庚辛椭圆体之长径戊 [ 乙 ](己) 丁锥体之高其阔甲丙 庚辛乙丁并同 即椭圆体之短径锥体之底径夫浑圆本得同径圆柱积三分之二锥体得 三分之一椭圆亦然今以甲丙短径求得甲壬丙癸圆面甲乙乘之为柱 积三归之为戊庚辛半椭圆积亦为戊乙丁圆锥积则戊庚己辛全椭圆积 必得圆柱积三分之二戊乙丁圆锥积必得圆柱积三分之一故相并即圆 柱积也

  大球截积内求 所容相等相切三球     
蔡兆熊

* 图略

如图子辰午为大球 截积子午为截积通弦己午为正弦取丑未倍己午作丑未寅等边三角形 其中垂线寅己引长己申至卯今申卯等于半己申以卯为心寅为界截辰 卯线于酉则酉己为小球全径乃于截积平圆内面以圆心己为心酉己 为边作等 [ 边 ](趋) 边三角其三角点即小球 切点也

又图设三球心为乙 为丙为甲作三线相连成乙甲丙等边三角形其心为戊丁为大球心作丁 戊丁丙成戊丙丁句股乃立小球半径为天以代数求之

* 算式略

依式是三正弦为方 正字上大矢为长阔较开四个方得小球半径三大矢为长阔较开一个方 为小球全径寅己方三倍午己方己卯为半较得酉己即为小球径

  六面体内容八 面体其二体比例若何    
汪凤藻

* 图略

如图甲乙正六面体 先求作内容八等面体法取子乙乙丑丑卯卯子四面之心丙丁戊己四点 作丙己己戊戊丁丁丙四线成丙戊直角四等边形即内容八面体半锥体 之底面次取子丑乙卯二面之心庚辛二点作庚丙庚丁庚己庚戊辛戊 辛丁辛己辛丙八线成庚辛丁己八等面体其六角均切六面体之面心欲 明二体之比例命六面体之一边为甲八面体之一边为乙以数明之

* 算式略

  不等面立三角 求重心其法若何      
汪凤藻

法任以一面为底面 求得其重心点自此点至顶角作线必过立三角重心复取一面如法作之 得二线交点即所求准此自底面取重心线四分之一即重心

  今有正圆球三 角垛共十球球径一尺求垛顶至平面高若干         
杜法孟

   答曰二尺六 寸三分强

* 图略

法自上层一球与中 层三球四球心作六线成六等边形边与球径等以一边为弦半边为句求 得股为每一线之中垂线又以一边为弦中垂线三分之二 即分角线为句 求得股为六等边自尖至底中心之立垂线倍之加球径为垛顶至平面之 高

如图子丑辰卯己午 未寅酉申十球子为上层辰丑卯为中层己午未寅酉申为下层试自子辰 丑卯四球心作甲乙丙丁六边形棱六角四平铺之则面亦四 如壬辛各成一 等边三角形试以乙丙丁一面为底取乙丙一边为弦丁丙一边折半为句 求得乙戊股为底面之中垂线又以甲丙一边为弦己丙 中垂线三分之二 为句求得甲己股为自尖 至底中心之立垂线即六边行之高亦即上层球心至中层球心之高亦即 中层球心至层底球心之高故倍之加上下二半径得垛顶至平面之高

又法以倍球径为边 作六等边形如前法求得立垂线加球径即得如前图甲乙边倍则甲己立 垂线必倍故加球径即得

又法以每边自乘三 归二因开平方即得自尖至底中心之立垂线如前图戊丙为甲丙线之半 则戊丙方为甲丙方四分之一甲戊方必为甲丙方四分之三亦十二分之九又己戊线 为甲戊线三分之一则己戊方为甲戊方九分之一甲 己方必为甲戊方九分之八亦即甲丙方十二分之八亦即甲丙方三分之 二故以每边自乘三归二因开平方得立垂线

  今有官司依平 方招兵初日方边四尺以后每日递加二尺每人日给银一两二钱已支银二 万六千零四十两推招了几日已 招若干兵           
黎子祥

   答曰共招十 四日

     招兵四 千九百五十六名

* 算式略

  瓜豆同日发芽 生蔓瓜蔓初日长一尺六寸以后每日所长递减半豆蔓初日长一寸以后 每日所长递加半二蔓第几日相等          
蔡锡勇

   答曰五日

解曰此即连比例率 数瓜蔓初日所长为末率豆蔓初日所长为首率得若干率数即二蔓相等 日数以代数明之

* 算式略

于此可见未之指数 必比层数减一命层数于天则末率恒为● 即●准代数之理上式可变为 ●为首率一之对数等于 故以二之对数 一0三 除瓜蔓初日所长一尺六 寸之对数 四0二一 得四加一得五为相等日 数

  有平句有明股 求圆径          
长秀

* 算式略

  有边股有平句 股较求圆径        
廷铎

* 算式略

  有底句有明股 求圆径          
长秀

* 算式略

  有底弦较和有 高句股较求圆径      
辛泽贤

* 算式略

  有断句股较有 大弦和和求圆径   
联印

* 算式略

  有明弦有底句 求圆径       
斌衡

* 算式略

  有明句有平弦 求圆径      
巴克他讷

* 算式略

  有平句股较有 弦求圆径        
李逢春

* 算式略

  有底弦和较有 句弦较求圆径      
左庚

* 算式略

  有断句股较有 句弦较求圆径      
韩常泰

* 算式略

  有断句股较有 明弦较较求圆径      
王镇贤

* 算式略

  有大差弦和较 有断句股较求圆径     
任敬和

* 算式略
  有断句股较有 大弦和和求圆径      
王锺祥

* 算式略

  有股弦较有 明句弦较求圆径      
王镇贤

* 算式略

  有虚句股和有 大中垂线求圆径      
赓善

* 算式略

  有容方边有 [ ] 句股较求圆径       
王镇贤

* 算式略

  有圆城甲出北 门东行二百步而立乙出南门直行回望见甲与城参相直复斜行至甲处 其行五百六十步求城径若干          
廷俊

   答曰二百四 十步

立天元一为半径倍 之即大弦和较甲行之路等于底句乙共行之路等于底弦明股和底句内 减天元得甲[元]为 大股弦较二底弦明股和内减二底句得 为二明三事和即二大句弦较以 乘大股弦较得 寄左另以大弦和较自之得元 为同数与左相消得二  开 方得半径倍之即全径

* 算式略

  二明股弦较等 于虚弦和较试作图解    
陈寿田

* 图略

如图甲乙丙明句股 卯丙午虚句股试自图心己至切点作己戊线癸午与午戊等丙乙与丙戊 等则丙午虚弦与丙乙午癸和等加卯丙午卯虚句股和得卯乙卯癸和为 虚和和与乙丑等试取丁点令甲丁等于明弦则乙丁为明股弦较夫甲 己与甲午等甲丁甲丙同为明弦以甲己减甲丁得丁己以甲午减甲丙得 丙午为虚弦依显丁己亦为虚弦复取己子令与丁己等则子丑亦为明股 弦较与乙丁必等丁子必为二虚弦以乙丑虚和和减之得乙丁子丑二 之虚弦和较亦即二明股弦较故二明股弦较等于虚弦和较也

  虚句弦较等 于句股较试作图解   
英铎

* 图略

如图子丑虚句丁戊 弦以子丑与丑戊句相加得子戊为平句以丁戊与地丁股相加得 地戊亦为平句试于子戊平句内减去丁戊弦余必等于地丁弦再于 地丁股内减 [ 丑 戊]句 余即为句股较也

  大股内减边弦 等于平句股较试作图解   
陈寿田

* 图略

如图戊为圆心甲乙 为大股作丁戊线与丑戊正交戊丁丙平句股甲丁壬为边句股甲丁为边 弦丙丁为平句丙戊平股与丙乙等则丁乙即平句股较以甲乙减甲丁得 丁乙即平较故大股减边弦等于平句股较也

  大股内减平句 股较等于边股平句和试作图解        
懿善

* 图略

如图甲乙丙大句股 甲己丁边句股丁戊丙平句股甲乙大股甲己边股丁戊平股己乙等取己 庚如丙戊为平句己乙平股内减己庚平句即庚乙平句股较故甲乙大股 内减庚乙平句股较等于甲己边股加己庚平句

  句股和内减 虚股弦较等于弦试作图解    
承霖

* 图略

如图庚壬丙为半径 为股之平句股其弦则庚己虚弦己丙弦和其股则庚戊虚股戊壬股 和其股弦较必为虚股弦较股弦较和而丁辛乙辛同为半径则平股弦 较又等句依句股例和较小较相加为句则[虚]虚 股弦较必等弦和较句股和减弦和较 即虚小较故等 于弦

  明股句相乘 等于虚句股积试言其理   
王宗福

* 图略

如图甲子己大句股 外之丙天丁为虚句股今自圆心作甲己之垂线心地则丙地等丙辰 明句地丁等丁 戊 股天辰内减 天丙虚句余为半虚较和天戊内减天丁虚股余为半虚较较 缘天辰天戊均为半虚和和故 按较较乘较和等于二直 积则明句之半虚较和乘股之半虚较较必等于虚句股积惟明句乘 股原等于句乘明股故明股句相乘等于虚句股积

  高股乘平句等 于明股弦和乘句弦和试作图解           
胡玉麟

* 图略

如图甲乙丙大句股 乙丁容圆方自心至切点作戊己线正交甲丙则辛己戊为高句股戊己庚 为平句股 以半径为勾半径为股故 己癸等癸寅己子等子丑 则辛己高股为明句弦和己庚平句即为股弦和故明句弦和 高股与句弦 和比若明股弦和与股弦和 平句比

  大差句乘小差 句等于虚句乘大股亦等于边股乘倍股试作图解    
胡玉麟

* 图略

如图甲乙丙大句股 乙丁容圆方戊辰丙底句股癸午丙平句股子寅大差句己丑小差股自圆 心至切点作甲丙正交线辛壬则戊壬辛为高句股辛壬癸为平句股 以半径为句半径为股故 壬癸等丙午壬丙即等 丙辰则戊丙底弦减壬丙底句余戊壬等甲庚庚乙原等戊辰则甲乙大股 即为底弦较和又壬己等己未子壬即等子卯作己申线与丙乙平行作子 酉线与丁丑平行则戊申等戊壬申辰即为底弦和较等申辰之己丑亦为 弦和较子酉癸亦为平句股辛未等丁未则未癸为平股弦较未酉即为 平弦和较等未酉之丁子亦为其弦和较夫寅丁全径原为二平股内减丁 子平弦和较则子寅大差句即平弦较和也故平弦较和 大差句与底弦 较和 大股比若平弦 和较 虚句与底弦和 较 小差股比

又壬子等子卯寅亥 等寅卯甲壬即等甲亥则壬癸即为边股弦较壬癸原等癸酉则酉亥即为 边弦和较等酉亥之子寅亦为其弦和较又壬己原等己未丑辰原等丑未 二壬丙即小差三事和内各减己丙小差弦 [ 余 ]二己 壬股即为小差弦和较故边弦和较 大差句与小差 弦和较 [ 二股 ]比若边股与 小差股比