- 首页
- 子藏
- 算法
- 晓庵新法
晓庵新法
以泛用加正合时求得行差为先得行差
前后次经大小同名者置平距如时差法而一与泛用相从半之为较法较法损泛用加正合定时为转际前泛时四分较法之一曰节率进退转际前泛时为先后二节各求其行差又求前泛时行差减之
若先节在正合前其行差与前泛时行差相加后节次经与前泛时异名者两行差亦相加
为行差较两较相从为法相消因节率为实实如法而一为损益差
先节行差小于后节为损差大于后节为益差若两行差相加为较者反是一加一减者先节加为损差后节加为益差
损益前泛时为转际次泛时
四分节率之一为次泛时节率进退次泛时为前后二节依前泛时法得损益差自因如前泛时损益差而一与次泛时损益差相加减
两差损益同名为加异名为减
为损益定差损益次泛时为转际定时
以掩食转际定时两曜定距减用数余为转际食限如用数而一为掩食浅深分秒
置凌犯转际定时两曜定距如法数而一得凌犯逺近寸分
置转际定时内减正合定时为转前定用刻分以加转际定时得重合前泛时依正合法
顺厯改逆逆厯改顺下仿此
得重合定时仍与转际定时相减得转后定用
依正合后终限法得重合后终限定时内减重合定时得终限定用刻分初终二限定时相减得掩食凌犯中积刻分
有犯无合
无正合时而两曜定距小于用数者为有犯无合用时后行差渐多者其用时在转际前渐少者其用时在转际后
以用时行差刻分损益用时
转际前损转际后益
为初限或终限前泛时
损为初限益为终限
依法求之得定时
为先得定时
置先得定时掩食凌犯行分
或初限定时或终限定时
如时差法而一为泛用加减先得定时求行差刻分损半为较法较法减泛用余以损益先得定时
终限以损初限以益
为转际前泛时依前节法得转际定时与先得初终定时相减为初终定用
依前节法得掩食浅深分秒凌犯逺近寸分
置转际定时损益先得定用
先得初限者此益转际为终限先得终限者此损转际为初限
为初限或终限前泛时复依前法求之
顺厯改逆逆厯改顺
得定时
为后得定时
与转际定时相减为后得初终定用先后两定用相从为掩食凌犯中积刻分
升降
掩食凌犯在升降之际者以月星赤道升降度与日躔赤道升降度相减为升降较
置升降较如赤道离日日周而一为升降先刻分损益日出入时为月星升降前泛时
月星升降赤道过于日躔者益小于日躔者损下仿此
置前泛时真刻分覆求升降次刻分损益日出入时为后泛时复求其真刻分求升降后刻分次后两刻分之较自因如次刻分而一加减后刻分
次刻分大于先刻分者加小于先刻分者减
为进退定分进退日出入时得月星升降定时
凡掩食凌犯皆从先降后升一曜求升降时唯月星相掩从月离求升降时
以掩食升降定时两曜定距损用数余为升降时掩食限
不及损者升降时无掩食
如用数而一得升降时掩食分秒
置凌犯升降定时两曜定距如法数而一得凌犯相距寸分
定距大于凌犯用数者升降时无凌犯
升降定时与初终二限定时相减为掩食凌犯内外刻分
升定时与终限定时相减降定时与初限定时相减各得掩食凌犯当见刻分即为掩食凌犯外分以减掩食凌犯中积得不见刻分即为掩食凌犯内分
置升降定时依法求得定向即为升降时掩食凌犯方位
昏旦隠见
掩食凌犯在早晚者以昏明中界为隠见时
诸星大小不齐隠见先后亦不等不胜悉辨今但以昏明中界为中数
月岁太白不在此限
以隠见时准升降定时依前节诸法得隠见时掩食浅深凌犯逺近及方位内外刻分
交会辰次
赤道宿度
置三辰交会诸限赤道经度
日月星曰三辰
日月食皆曰交会今以太白入日及凌犯掩食附之日月食食甚初亏复明食既生光合环分环七限太白食日食中入日出日全入初出五限掩食凌犯各正合初终转际重合五限
以近少赤道宿积损之得各曜躔离赤道宿次度分
黄道宿次
置三辰交会诸限黄道经度以近少黄道宿积减之得各曜躔离黄道宿次度分
又置各曜赤道上黄道积度以赤道上黄道宿积近少者损之得各曜躔离赤道上黄道宿次度分
辰次
各曜躔离宿次所在宫舍即为躔离辰次若一宿两辰者视躔离宿次度分在宫界以下为前辰以上为次辰
晓庵新法卷六