新法算书

  同而食之分数时因之所以随
  地所见亦不同也第合朔论实会
  交食论似会实会似防之线在日
  月本天无度分而全依宗动天上
  黄道圜十二宫之度分则必当极
  论防线至黄道之处实防线所至
  谓之实处似防线所至谓之似处
  矣以实防线上之日月为据而目
  视日至黄道有日似处目视月至
  黄道有月似处得其似处可以较实处之距度矣如第二图子寅丙为实防线至黄道卯则卯为实处若壬目视子日至黄道辰视寅月至黄道午则辰为日似处午为月似处也然所用既皆实防似防而并论中防者凢地与日圜不同心而与列宿天则同心心同则径同而日圜之心在列宿天心与地心之上则日圜之径亦在列宿天径与地径之上列宿天之径割日圜为大小两分两分虽有大小而各应黄道之一百八十度此空度隔度之所出故不得不辩夫必用地中防线者求凖对日与黄道迟速不均不平之本动又因而求实防之准则焉
  食之征【第三】
  凡日月相防未必皆食惟因防之有似有实而悉其差之逺近几何此必须测騐而后得凡人居赤道北者月之似处比实处恒若偏南若偏低者然夫月在日与目之一直线上不偏斜不低昻乃能掩日而为食若精察之较月食更难焉第观日月似会之时其距度比日月之半径或大或等者必无食也小则必食矣愈小则食愈大矣考之在龙头龙尾若正当头尾或与头尾不甚逺则当测其食否
  若与龙头龙尾相逺
  而月似防之距度过
  三十四分则无食矣
  可不必测矣月食则
  于望日求之月之距
  望若小于月半径与
  地半影者必食也其
  食之处定在龙头龙
  尾之两傍十三度三
  分度之一过此则月
  之行道不相涉而不
  相掩矣如甲子年八
  月望日月经龙尾不
  远则应测其食而考
  其所经之躔度乃在
  黄道白羊宫三度五
  十六分四十一秒其
  躔道距度则五分三
  十六秒矣夫月半径得十六分四十三秒而地影之半径则四十五分十三秒二数并之即为六十一分五十六秒距度止五分三十六秒是最小于月径及地影之半而全体必尽食地影必且有余矣若乙丑年八月望日其月在龙尾双鱼宫二十三度半夫月半径十七分十五秒而地影之半径则四十六分三十七秒二数并之得六十三分五十二秒月距躔道四十八分二秒则小过于地影之半径而月体必半入地影而不得全食也
  食之处【第四】
  龙头龙尾者何是日躔
  之两界月食所经之处
  也昔人测日月之食必
  在躔之二处而月之距
  此益逺则距度益广广
  者象腹则其所起所止
  象头尾矣十二宫右旋
  从头至尾则左旋而此
  头尾二处非定于二宫
  但设为多圜嫌于繁混故止取龙之头尾以略征之也如上图甲丁乙为日躔圜甲丙乙为月行圜两圜交于甲于乙而从甲上升左旋至丙至乙故甲为头乙为尾丙丁相距最广为腹也但甲在白羊宫则乙在天称宫而腹在磨羯宫若甲在双鱼宫则乙在室女宫而腹在人马宫凡十九年乃复原处故日月之食不十九年不能在本躔同宫同度也
  日月地影之径说【第五】
  日月之径原自平分今因日在本圜月在小轮有逺有近近则见其径大逺则见其径小又地影者是日与地所生故日之逺近亦能为影之大小也然无有食而月不居本圜之高处第就月居小轮日居本圜则每食自不同而其径之大小与小轮与日本圜无一定之规则惟用日月之本动方可考定今考月体本动之法每四刻若行半度则知其径亦半度矣日体每四刻若行二分三十秒湏以十三乘之则知其径十三倍于二分三十秒矣此系一定之常法但日月之行时刻不均故以是法测其体之大小未免少差盖日愈髙其体愈觉小其动亦愈觉迟日愈下其体愈觉大其行亦愈觉速月在小轮其高下迟速亦然其考地影之法须先定日之最逺处月径假有三十三分即以三率法求月体于影如五与十三之比例即等于三十三与八十五零五分之四之比例也若日不在最逺先当考日之居所离最逺处几何度次考日行比最逺处几何疾以疾行之度减去地影则得所求矣
  食大小迟速辩【第六】
  夫距度广狭实为月食大小迟速之分故望日之月视其进地影厚处则其食迟进地影浅处则其食速朔日之月
  视其似防少偏日躔
  或似防大偏日躔而
  其故总由日月逺乎
  龙之头尾也望日之
  月在头尾正躔则月
  食至大至深若少偏
  而躔影之半径与月
  体之半径等则虽全
  食而即复若距躔影
  又远则食不全也若日虽全食亦不
  能乆因月径之似处小仅能遮日体
  而须臾便过故但能全掩不能乆掩
  也今欲知食分大几何必须定其分
  数几何葢西洋取日月本体为十二
  平分移此分寸量月所经之处若日
  月食十二分有余者是谓至全至大
  之食也但欲精察不谬月食则究食
  甚时月道距躔道几何日食则究食
  甚时月似处距实会几何
  经几何【第七】
  欲知食之经几何须知日月之本动设若日月本动相同则月必不能进影进亦必不复出矣今月行黄道比日甚速能逐及于日而又过日前故但较月过速日过迟之两即知日月食经得几何也此有筭就立成凡某时刻日月当食其本动之度几何则以日过迟之少数减去月过速之多数次取立成视月多行之度几何则得盖以过速之多数除初食至食甚之度数即系初食至食甚经之度分也食甚至复圆亦如之顾日食之中前中后与月食有异盖日食惟在躔道九十度正天中者中前中后均平无异若其食偏在东西即有异矣偏东则初食至食甚短于食甚至复圆偏西则食甚至复圆短于初食至食甚故求日食毫厘不差必须较看日月行动先后两时刻度分其一在未食前其一挨复圆后而初食至食甚度分用以除食前一时刻度分食甚至复圆度分用以除复圆后一时刻度分即是日食中前中后之经度分也
  日食月食辨【第八】
  夫日食与月食固自有异盖月食天下皆同而日食则否日食此地速彼地迟此地见多彼地见少此地见偏南彼地见偏北无有相同者也而月食则凡地面见之者大小同焉迟速同焉经同焉唯所居不同子午线者则时刻不同矣盖月一入影失其借光更无处可见其光也右所举不过略言食之固然与夫所以然耳若精求合朔之时刻日月之真方位及月离躔道之距度考南北东西差每处不同日月每时行几何度分与夫月进地影食甚时以较太阳行度几何迟速及他种种议论种种见解是书皆未及言俱各有本论及立成井井胪列俟翻译后开卷一目便已了然






  新法算书巻十三
  钦定四库全书
  新法算书卷十四    明 徐光启等 撰测食畧卷下
  月食为地影所隔第一
  问月食必在于望因日月相对之故其说明矣至谓地影隔之而食窃有疑焉曰月对日而受其光苟日月之间非有不通光之实体为之障蔽则必不能阻日光之照月体无论空中之火空中之气与夫天体不能掩月即金水二星虽居日月之间其影俱不及地况能过地而及月乎则知能掩日者惟有地体一面受光一靣射影而月体为借光之物入此影中安得不食而半进则半食全进则全食矣
  月体当食尚有光色第二
  问无光之月一入地影遂全失其借光也然食时尚有依稀可见之光天文家毎视食月之色预言食之徴验若人以目切墙屋掩其未食之光体而独视其既食之乌体其光尚明于星也葢物之可见必借外光不独能见物体且更能发越物色也月既在地影即失借光安得尚有色乎曰月体虽食尚有防光今直以影为明者误也以影为暗者亦误也称影为明暗之中者庶为近之葢日所正照为最光明有物隔之而四傍之气映射或对面之光反照虽无最光明亦有次光明也如一室之外为最光明一室之内为次光明也云之上为最光明云之下为次光明也直至所隔愈深去光愈逺并次光明亦渐防防而又防以至丝毫无光乃为暗耳夫人与地近日与地逺人居地此面日在地彼面至夜子初人在地影至浓之中近物尚能别识何况月在地影至锐之处次光明正盛其有光色又何疑乎且人在极暗则月光虽防视之反觉明也
  日食在朔月体掩之第三
  问前言月在日前能掩日光是已金水二星亦皆在日前又皆实体且水星虽小而金星则大于月也何独以食属月乎曰二星于人甚逺不能掩日百分之一二而日光甚盛即亏百分之一二人亦不觉且二星去日甚近去地甚逺所出锐角之影亦甚短决不能及地面也若夫月体虽不及太白之大然去地近去日逺一指足蔽泰山又何疑乎由此言之求一实体之能全掩日又从西而东过之甚疾唯月为能葢月之右旋比诸天更速且必至合朔方有食则日食于月决然之理也
  因食知月体不通光第四
  问月体受光而返照之必不通光如铜鉄镜葢通光则不能受日光而反照他物亦不能掩日而生影也曰镜之设譬似矣而尚未尽夫镜之照物而反生之象其大小逺近必与物体相当然后可以镜喻月今观镜之面有突如球有平如案有□如釡惟平者所生之象乃与物体相当若如釡者所生物象必倍于物体如球者所生物象必小于物体矣试以球镜照逺物而人又从逺视之则物象必倍小甞持球镜照太阳之体其小如星倘月体如球镜欲其反生太阳之象乌可得乎又问合朔后月之下半未受日光而月体防光比诸星更显若不通明则此光又从何生且观其掩日而日全食时月之边际觉稍明于月之中心似中间厚处难通而薄处稍可通透乎曰前既言月在地影最中处乃天光映照之明若合朔时则有光之天与月体最为切近而日光上照月体约有大半四边岂得无光或言月既非极通光如玻瓈或半通光如玉石特因在后之物其体质不明故不能映见在后之物乎曰试观日食甚之时天光尽黒星体亦现尔时太阳在后体质最为明显何以不能映见丝毫可知月体絶不通光也或言在月后之物必更坚密于月者然后能照见若较月更通彻即不能见乎曰若然日体在月后坚密不亚于月而亦不能见可言日体为通彻乎又凡目所注必须有色及所照之光此二者必不通彻之体乃能受之则月体从可推矣月食时人目不及见月受光之靣第五
  上言日光照月体大半则知日比月体至大然日食甚之
  时人目所见之靣何故絶无丝毫
  之光曰凡人视圆球止见小半葢
  球有大圜有小圜若以两线切大
  圜其线必为平行今目所注视之
  线既不能平行则不切至大圜可
  知而目亦仅能及小圜矣【详见几何一卷
  二十八题】又望后三日虽月毎日行十
  三度有竒而月边尚似圆圜可见
  人目正及其小圜也或曰望日所
  见月体之靣即月所受光之靣其
  光为大半则二三日其光尚在大
  半之内则晦后月轮稍移便宜见
  光而光今竟不即见何也曰月掩
  日之时一则人所注之圜与日光
  照月之圜为平行一则日食时不
  过一两刻则两线亦不能相切至
  望则不同矣又望时日光照月少
  于他时葢晦日日与月止隔金水
  二星天而甚近故所照亦多于望日望日与月隔金水二天及月本天之体而甚逺故所照亦少于他日然晦日所照虽多于望日而人目所及止见小圜而月光不即见职由此矣
  日月毎月不食第六
  夫月不恒食之故有二一则日体常丽躔道则地影亦常对躔道一则月行常出入躔道故他影不及葢凡光照物必直射而作直线今日在躔道其光自平靣而直通至地则反影亦反射至天如日光之射地其日光绕地一周则影亦绕天一周其地影至月天濶不过一度半躔道平分地影毎边有四分之三又望日月轮不在龙头龙尾近处故月体与地影不得相遇故不食此前篇言毎月食三体必在一直线也或曰日食应有多次为其不论月之寔所但论月之似所若论似所则南北所差甚多如此则人住两极近处者视月逺于躔道亦能食日矣曰人居在北极下而似所与寔所相距不过一度譬如月在地平东西差亦不过一度可见日欲食时月不能离躔道一度强故日食亦少也但论一处则日月之食不等槩论天下日食应多于月食也
  因月食徴地圆如球第七
  格物家悉言地圆如球验之洵不得不然也葢凡物之性重者势必就下若一无所阻必径就天心天心者最下处也故大地四旁皆欲就下其势不得不结为圆然则虽山岳之髙湖海之深亦无损于地体之圆也今以地靣论之日月星之出入东西异则时刻亦异试观同此月食欧逻巴见于丑正亚细亚见于寅正是可见日之没也先没于亚细亚之东后没于欧逻巴之西也非圆于球者必不然矣大率从西而东七千五百里则应天三十度而先八刻见食设地体如案则天下见食共在一时无有彼此后先矣若地势如盌则逺于月之处先得见食近于月之处反后得见食矣至若地体如觚而四方或八棱则凡在一靣者见食皆同矣何故有时刻先后之异乎非圆而何也又问地固圆矣但日月初出半露地上圜体切之宜若弧状今但如何也曰地球掩日月之半寔自如弧今见如者因地形掩日月处较全圜甚短人目视之如直而寔圆也今设一圜线其长寻丈若截取分寸之长则不见其曲
  矣问地既为圆球吾措足之地在
  球靣则所见四旁之地宜皆低也
  今见近处觉低逺处反觉髙何也
  曰凡人视物之逺近皆从一直线
  来入吾目而人之内司从外司忆
  之故视逺物出线似过髙于近物
  出线如上图甲为人目乙为逺处
  丙丁为近处俱属一平线乙逺出
  线来甲目似髙于丙丁近出者也
  如人立长廊中或长瓮道廊道两头平正如一而自此视彼只见其髙矣夫视近尚尔况地靣之逺乎惟据寔理察得之则知外司之似误矣
  因食徴地海并为圆球第八
  航海者逺望他舟之来未见其舟先见桅端须臾渐两相近则防樯头尾全舟毕见矣设海靣为平则此舟全体可见何乃有先后见不见之殊乎