- 首页
- 子藏
- 算法
- 御制数理精蕴
御制数理精蕴
设如有长方面积三万四千五百六十九尺纵多三千八百三十二尺问长阔各几何
法列积如开平方法商之其三万尺为初商积应商一百尺而纵多数为三千转大如初商数凡遇此类则用四因积数加较自乗开方法之或用半较自乗加于原积开方之法为明白简易也故以纵多三千八百三十二尺折半得一千九百一十六尺为半较自乗得三百六十七万一千零五十六尺与原积三万四千五百六十九尺相加得三百七十万五千六百二十五尺开方得一千九百二十五尺为半和于半和减半较得九尺为阔于半和加半较得三千八百四十一尺为长也
设如有月台一座共用方甎一千九百二十块其长比阔多八块问长阔两面各用甎几何
法以长比阔多八块折半得四块为半较自乗得十六块与积数一千九百二十块相加得一千九百三十六块开方得四十四块为半和于半和四十四块减半较得四十块为阔面甎数于半和加半较得四十八块为长面甎数也
设如有银三百六十两赏人其人数比每人所得银数为五分之二问人数及每人所得银数各几何法先用比例分其总银数以五分为一率二分为二率三百六十两为三率得四率一百四十四两开方得十二为人数以人数除共银数三百六十两得三十两为每人所得之银数也此法以人数为阔其每人所得银数为长成一长方形人数既居银数之五分之二是阔为二分长为五分也今将其共银分作五分而取其二分即人数与所得银数相等而成正方形矣故开方而得人数也
设如有长方面积八尺长阔相和六尺问长阔各几何
法列积如开平方法商之积八尺止可商二尺乃以二尺书于原积八尺之上而以所商二尺与和数六尺相减余四尺以所商二尺乗之得八尺书于原积之下相减恰尽即知长方之阔得二尺与和六尺相减得四尺即为长方之长也如图甲乙丙丁长方形容积八尺其甲乙边长四尺甲丁边阔二尺其甲丁与甲乙相并得六尺即长阔之和初商所得二尺即甲戊己丁正方之每一边葢两边俱止一位故以初商所得为一边于长阔和内减去初商所余即又一边是以两边相乗而与原积相等也此法比较数为问者在加减之异其以较数为问者以所商之数与较数相加此以和数为问者则以所商之数与和数相减也
又法以积八尺用四因之得三十二尺而以和数六尺自乗得三十六尺减去四因之数余四尺开方得二尺即为长阔相较之数乃以较数二尺与和数六尺相加得八尺折半得四尺即长方之长减较二尺得二尺即长方之阔也如图甲乙丙丁长方形容积八尺四因之得甲乙丙丁戊己庚乙辛壬癸己子丁丑壬四长方形廻环相凑成一空心正方式较之和数六尺自乗之甲戊辛子正方形所少者止正中之一小正方形故相减即余丑丙庚癸之一小正方形其丑丙类每一边即长阔之较故开方得长阔之较既得较加于和数是为倍长故折半而得长长减较而得阔也此法比较数为问者亦在加减之异其以较为问者用较自乗与四因数相加开方而得和此以和为问者用和自乗与四因数相减开方而得较也
又法先将和数六尺折半得三尺为半和自乗得九尺与原积八尺相减得一尺平方开之仍得一尺为半较于半和减半较得二尺为阔于半和加半较得四尺为长如图甲乙丙丁长方形甲乙为阔甲丁为长甲壬为长阔和【丁壬与丁丙阔等】折半为甲庚半和将甲乙丙丁长方内之庚辛丙丁移于乙丑癸己则成甲丑癸己辛庚一磬折形与甲庚半和自乗之甲丑子庚正方形相减余己癸子辛一小正方形即半较自乗之方故开方而得半较也故甲丑之半和减乙丑之半较得甲乙之阔于甲庚之半和加庚丁之半较得甲丁之长也又图甲乙丙丁长方形容积八尺甲壬为长阔之和甲庚己庚庚壬皆半和甲丁长减等甲乙阔之甲戊余戊丁为长阔之较其庚丁则为半较而甲丁己丁丁壬又为连比例之三线故己丁中率自乗之方与甲丁首率丁壬末率相乗之长方等【见几何原本九卷第三节】则是己丁自乗之方与原设甲乙丙丁长方之积等也又己庚丁为勾股形其己丁边自乗之方与丁庚边自乗之方相并而与己庚自乗之方等【见几何原本九卷第四节】故于己庚半和自乗方内减去与原设甲乙丙丁长方积相等之己丁自乗之数开方而得庚丁为半较于己庚相等之庚壬半和内减庚丁半较而得丁壬与丁丙等之阔又于己庚相等之甲庚半和加庚丁半较而得甲丁之长也
设如有长方面积八百六十四尺长阔相和六十尺问长阔各几何
法列积如开平方法商之其八百尺为初商积可商二十尺乃以二十尺书于原积八百尺之上而以初商二十尺与和数六十尺相减得四十尺以初商二十尺乗之得八百尺书于原积之下相减余六十四尺为次商廉隅之共积乃以初商二十尺倍之得四十尺与和数六十尺相减余二十尺为廉法以除六十四尺足三尺因廉法内尚要减去商数为法故取大数为四尺则以四尺书于原积四尺之上而以廉法二十尺与次商四尺相减得十六尺以次商四尺乗之得六十四尺书于余积之下与余积相减恰尽即知长方之阔得二十四尺与和六十尺相减余三十六尺即为长方之长也如图甲乙丙丁长方形容积八百六十四尺其甲乙边阔二十四尺甲丁边长三十六尺甲戊为长阔和六十尺其丁戊与甲乙等甲子二十尺为初商数与辛戊等甲辛四十尺则和内减去初商之数两数相乗成甲子己辛长方形即初商所减之积也丁戊既与甲乙等辛戊又与甲子等则丁辛与子乙等丁庚己辛小长方积与庚丑壬丙长方积等是则次商廉隅之共积即子乙壬丑之积也次于甲戊和内减倍初商数四十尺如寅戊余甲寅二十尺与子癸等为廉法子乙者为次商数也子乙与丑癸等则于子癸廉法内减丑癸余子丑与次商子乙相乗得子乙壬丑小长方即次商所减之积故减原积恰尽也以初商甲子二十尺合次商子乙四尺得甲乙二十四尺为阔于甲戊长阔和六十尺内减与甲乙相等之丁戊阔二十四尺得甲丁三十六尺为长也三商以后皆仿此递析开之
又法以积八百六十四尺用四因之得三千四百五十六尺而以和六十尺自乗得三千六百尺减去四因之数余一百四十四尺开方得一十二尺即为长阔之较乃以较十二尺与和六十尺相加得七十二尺折半得三十六尺即长方之长减较十二尺得二十四尺即长方之阔也
又法先将和数六十尺折半得三十尺为半和自乗得九百尺与原积八百六十四尺相减得三十六尺开方得六尺为半较于半和减半较得二十四尺为阔于半和加半较得三十六尺为长也
设如有长方面积一万九千三百一十二尺长阔相和二百七十八尺问长阔各几何
法列积如开平方法商之其一万尺为初商积可商一百尺乃以一百尺书于原积一万尺之上而以初商一百尺与和数二百七十八尺相减得一百七十八尺以初商一百尺乗之得一万七千八百尺书于原积之下相减余一千五百一十二尺为次商廉隅之共积乃以初商一百尺倍之得二百尺与和数相减得七十八尺为廉法以除一千五百一十二尺止足一十尺因廉法内尚要减去商数为法故取大数为三十尺则以三十尺书于原积三百尺之上而以廉法七十八尺与次商三十尺相减得四十八尺以次商三十尺乗之得一千四百四十尺书与余积之下与余积相减余七十二尺为三商廉隅之共积乃以初商次商之一百三十尺倍之得二百六十尺与和数二百七十八尺相减余十八尺为廉法以除七十二尺止足四尺亦因取大于足除之数故定为六尺则以六尺书于原积二尺之上而以廉法十八尺与三商六尺相减得十二尺以三商六尺乗之得七十二尺书于余积之下与余积相减恰尽即知长方之阔得一百三十六尺与和二百七十八尺相减余一百四十二尺即为长方之长也此法次商三商皆取大于足除之数反覆商除始能相符不若四因积数减和自乗开方之法或半和自乗减原积开方之法为整齐也法以一万九千三百一十二尺用四因之得七万七千二百四十八尺而以和二百七十八尺自乗得七万七千二百八十四尺减去四因之数余三十六尺开方得六尺即为长阔之较乃以较六尺与和二百七十八尺相加得二百八十四尺折半得一百四十二尺即长方之长减较六尺得一百三十六尺即长方之阔也
设如有长方面积六万九千三百六十尺长阔相和七百八十二尺问长阔各几何
法列积如开平方法商之其六万为初商积可除二百尺而以二百尺与和数七百八十二尺相减得五百八十二尺以初商二百尺乗之得十一万六千四百尺大于积数乃改商一百尺书于原积六万尺之上而以所商一百尺与和数七百八十二尺相减得六百八十二尺以初商一百尺乗之得六万八千二百尺书于原积之下相减余一千一百六十尺为次商廉隅之共积乃以初商一百尺倍之得二百尺与和数七百八十二尺相减得五百八十二尺为廉法以除一千一百六十尺止足二尺爰书空位于原积三百尺之上而以二尺书于原积空尺之上而以廉法五百八十二尺与三商二尺相减得五百八十尺以三商二尺乗之得一千一百六十尺书于原积之下与余积相减恰尽即知长方之阔得一百零二尺与和七百八十二尺相减余六百八十尺即为长方之长也此法初商应商二百尺因减纵相乗得数转大于原积故改商一百尺凡遇此类不若用四因积数之法与半和自乗之法算之法以和数七百八十二尺折半得三百九十一尺自乗得一十五万二千八百八十一尺与原积六万九千三百六十尺相减余八万三千五百二十一尺开方得二百八十九尺为半较于半和减半较得一百零二尺为阔于半和加半较得六百八十尺为长也
设如有钱四千七百六十文买果树不知数但知树之共数与每株之价相加得一百七十四问树数及价各几何
法以共数一百七十四折半得八十七为半和自乗得七千五百六十九与共钱四千七百六十文相减余二千八百零九开方得五十三为半较于半和减半较余三十四为树数于半和加半较得一百四十为树价也此法以树数为阔树价为长成一长方形其树数与树价相加即如长阔之和故以半和自乗减积开方得半较既得半较以减半和为树数加半和为树价也
设如有法书一卷共一千一百五十九字其行数与每行字数相加共八十问行数及字数各几何法以和数八十折半得四十为半和自乗得一千六百与共字一千一百五十九相减余四百四十一开方得二十一为半较于半和加半较得六十一为行数于半和减半较余十九为每行字数也
设如有五百八十八人用船均载其船数与每船所载人数相加比船数多四分之三问船数与每船所载人数各几何
法先用比例分其积以三分为一率一分为二率五百八十八人为三率得四率一百九十六人用开平方法开之得十四为船数以三因之得四十二为每船所载之人数也此以船数为阔每船所载人数为长成一长方形船数与人数相加即如长阔之和和数既比船数多四分之三则是和数为四分每船所载人数为三分船数为一分即阔为一分长为三分也故将共人数三分之而取其一则人数与船数同为一分而成正方形矣故平方开之即得船数每船所载人数既为船数之三倍故三因之为所载人数也
御制数理精蕴下编卷十一
<子部,天文算法类,算书之属,御制数理精蕴>
钦定四库全书
御制数理精蕴下编卷十二
面部二
勾股【定勾股无零数法 勾股相求法附勾股求积 勾股形内求中垂线及容方圆等形 勾股和较相求法】
勾股
周髀曰折矩以为勾广三股修四径隅五既方其外半其一矩环而共盘得成三四五两矩共长二十有五是为积矩此言勾股正数之所以立法也葢勾股得长方之半形故其一角必成矩【所谓直角也】而后可谓勾股如其一角不能成矩则为三角形而非勾股矣因勾股一角必直故立于圜界之正一半而自直角所作垂线遂成连比例三率是以直角相对界所作方形之积必与两傍二界所作两方形之积等【见几何原本九卷第四节】而勾股彼此相求之法于此生焉其法所该有四一勾股三者知其二而得其一或知其二而得其积一勾股形自其直角对界求垂线一勾股形内容方圆等形一勾股三者知其一复知其余二者之较或二者之和而得其二或知其两较或两和或一较一和而得其三【勾股和较之法虽杂出多端然皆不出勾股方积相求之理较有勾股较勾较股较和有勾股和勾和股和和较相疉则又有与勾股和相和或名之曰和和有与勾股和相较或名之曰和较有与勾股较相和或名之曰较和有与勾股较相较或名之曰较较又有勾与股和相和者或名之曰勾和和股与勾和相和者或名之曰股和和即和和也勾与股和相较者或名之曰勾和较股与勾较相和者或名之曰股较和即较和也股与勾和相较者或名之曰股和较勾与股较相和者或名之曰勾较和即较较也勾与股较相较者或名之曰勾较较股与勾较相较者或名之曰股较较即和较也】此四者皆勾股之正法理一定而数随之者也至若勾三股四五之类倍之至于亿兆而总不越此一定之分者名曰正勾股槩以比例推之则三者止有其一即可得其二或有积而即得其三界此为数一定而法随之者也一一按类列题发明如左
定勾股无零数法
设如用二四八连比例三率定勾股无零数问各得几何
法以中率四命为四尺为股首率二尺与末率八尺相减余六尺折半得三尺为勾首率二尺与末率八尺相加得十尺折半得五尺为也如图甲乙为首率二尺丙乙为中率四尺乙丁为末率八尺今以甲乙与乙丁相和共为甲丁十尺而以丙乙立于甲丁线相和之乙处乃以甲丁折半于戊以戊为心甲丙丁为界作半圜复以丙至甲至丁作丙甲丙丁二线遂成甲丙丁勾股形其丙角立于圜界之半必为直角【见几何原本四卷第十四节】而丙乙为垂线即将甲丙丁勾股形分为甲乙丙丙乙丁两勾股形而与原形为同式三勾股形矣【见几何原本九卷第一节】其甲乙与丙乙之比同于丙乙与乙丁之比为连比例三率故以中率丙乙为股而首率甲乙【与己丁等】与末率乙丁相减余乙己折半得乙戊为勾又首率甲乙与末率乙丁相加之甲丁折半得甲戊戊丁二半径与丙戊等为也此法原为定勾股三者俱无零数之法所设之数必彼此可以度尽始可立为准则否则勾股三者必有一不尽之数矣