- 首页
- 子藏
- 算法
- 御制数理精蕴
御制数理精蕴
设如有一方台上面共铺方甎四千零九十六块问每一边得甎几何
法列方甎四千零九十六块为方积于六块上定单位空百块上定十位其四千块为初商积以初商本位计之则空百块为初商积之单位而四千块为四十与六自乗之数相准即定初商为六书于方积空百块之上而以六自乗之三十六书于初商积之下相减余四百块爰以余积九十六块续书于下共四百九十六块为次商廉隅之共积而以初商六作六十倍之得一百二十为廉法以除四百九十六足四倍即定次商为四书于方积六块之上而以次商四为隅法与廉法一百二十相加共得一百二十四为廉隅共法书于余积之左以次商四乗之得四百九十六与余积相减恰尽是开得六十四块为方台上面每一边之甎数也
设如有三百六十一人用船分载其每船所载人数与共船数相等问共船几何
法列三百六十一人为方积于一人上定单位三百人上定十位其三百人为初商积以初商本位计之则三百为初商积之单位止与一自乗之数相准即定初商为一书于方积三百之上而以一自乗之一书于初商积之下相减余二百爰以余积六十一续书于下共二百六十一为次商廉隅之共积而以初商一作一十倍之得二十为廉法以除二百六十一足九倍即定次商为九书于方积一人之上而以次商九为隅法与廉法二十相加共得二十九为防隅共法书于余积之左以次商九乗之得二百六十一与余积相减恰尽是开得十九为共船数而每船载十九人也
设如有银七百八十四两散给夫匠其每人所得银数与其人数相等问共人数几何
法列七百八十四两为方积于四两上定单位七百两上定十位其七百两为初商积以初商本位计之则七百为初商积之单位止与二自乗之数相准即定初商为二书于方积七百之上而以二自乗之四书于初商积之下相减余三百爰以余积八十四续书于下共三百八十四为次商廉隅之共积而以初商二作二十倍之得四十为廉法以除三百八十四足八倍即定次商为八书于方积四两之上而以次商八为隅法与防法四十相加共得四十八为防隅共法书于余积之左以次商八乗之得三百八十四与余积相减恰尽是开得二十八为共人数而每人得银二十八两也
设如用船运粮六千五百六十一石欲取一船别用将此船米分载各船每船领去一石其本船尚余一石问共船几何
法列米六千五百六十一石为方积于一石上定单位五百石上定十位其六千五百石为初商积以初商本位计之则五百石为初商积之单位而六千五百为六十五与八自乗之数相准即定初商为八书于方积五百之上而以八自乗之六十四书于初商积之下相减余一百爰以余积六十一续书于下共一百六十一为次商廉隅之共积而以初商八作八十倍之得一百六十为廉法以除一百六十一足一倍即定次商为一书于方积一石之上而以次商一为隅法与廉法一百六十相加共得一百六十一为廉隅共法书于余积之左以次商一乗之仍得一百六十一与余积相减恰尽是开得八十一为共船数而每船载米八十一石也此法葢因一船所载之米分与各船毎船各领一石即共去八十石故本船尚余一石也
设如有钱一万五千六百二十五文买瓜每瓜一个与脚钱一文因无现钱将一瓜准作脚钱问瓜数几何
法列钱一万五千六百二十五为方积于五文上定单位六百上定十位一万上定百位其一万为初商积以初商本位计之则一万为初商积之单位止与一自乗之数相合即定初商为一书于方积一万之上而以一自乗之一书于初商积之下相减无余爰以第二位积五千六百续书于下为次商防隅之共积以次商本位计之则六百为次商积之单位而五千六百为五十六而初商之一即为一十故以初商之一作一十倍之得二十为廉法以除五十六足二倍即定次商为二书于方积六百之上而以次商二为隅法与防法二十相加共得二十二为防隅共法书于余积之左以次商二乗之得四十四与次商廉隅共积相减余一千二百复以末位积二十五续书于下共一千二百二十五为三商廉隅之共积以三商本位计之则积与边皆仍为本位乃以初商次商之一百二十俱倍之得二百四十为防法以除一千二百二十五足五倍即定三商为五书于方积五文之上而以三商五为隅法与防法二百四十相加共得二百四十五为防隅共法书于余积之左以三商五乗之得一千二百二十五与余积相减恰尽是开得一百二十五为共瓜之数亦即每瓜之价也此法因每瓜应给脚钱一文今以一瓜准之即知一瓜之价与瓜之共数相等故以开方法算之而得也
带纵平方
带纵平方者两等边直角长方面积也有积数因长比阔之较或长与阔之和而得边故曰带纵葢正方之纵横皆同故止有积即可得其边若长方则纵横不等知其积又必知其纵横相差之较或纵横相并之和始能得其边故以长阔之较为问者则皆较为带纵加所开之数商除之而得阔或四因积数加较自乗平方开之即长阔之和和加较半之而得长和减较半之而得阔或半较自乗加原积而开平方即得半和加半较而得长减半较而得阔如以长阔之和为问者则用和为带纵减去所开之数商除之而得阔或四因积数减和自乗平方开之即长阔之较较减和半之而得阔较加和半之而得长或半和自乗减原积而开平方即得半较加半和而得长减半和而得阔夫用半较半和之法与四因积数之法同出一理葢四因积数加全较自乗故开方而得全和半较自乗加原积故开方而得半和四因积数减全和自乗故开方而得全较半和自乗减原积故开方而得半较此即面与线之比例面加四倍而边加一倍边得其半而积为四分之一也法虽不一要之皆使归于正方以求其和较是则虽曰带纵仍不外乎平方之理也
设如有长方面积八尺纵多二尺问长阔各几何法列积如开平方法商之积八尺止可商二尺乃以二尺书于原积八尺之上而以所商二尺加纵多二尺得四尺以所商二尺乗之得八尺书于原积之下相减恰尽即知长方之阔得二尺加入纵多二尺得四尺即为长方之长也如图甲乙丙丁长方形容积八尺其甲乙边长四尺甲丁边阔二尺其甲乙长比甲丁阔所多戊乙即纵多之数初商所得二尺即甲戊己丁正方之每一边葢因此法长阔两边俱止一位而积亦止一位故初商所得即为一边而加入纵多即又一边是以两边相乗而与原积相等也
又法以积八尺用四因之得三十二尺而以纵多二尺自乗得四尺加八四因之数得三十六尺开方得六尺即为长阔相和之数乃以纵多二尺与长阔之和六尺相加得八尺折半得四尺即长方之长减纵多二尺得二尺即长方之阔也如图甲乙丙丁长方形容积八尺四因之得甲乙丙丁戊己庚乙辛壬癸己子丁丑壬四长方形廻环相凑成一空心正方式再加入纵多二尺自乗之丑丙庚癸之一小正方形即成甲戊辛子之一大正方形其甲戊类每一边即长阔之和故开方得长阔之和既得和加纵多是为倍长故折半而得长减纵多则为倍阔故折半而得阔或得长而减纵多亦得阔也
又法先将纵多二尺折半得一尺为半较自乗仍得一尺与原积八尺相加得九尺平方开之得三尺为半和于半和减半较得二尺为阔于半和加半较得四尺为长如图甲乙丙丁长方形甲乙为长甲丁为阔戊乙为纵多之较将较折半于庚而移庚乙丙辛置于丁己癸壬再加己辛子癸半较自乗之方则成甲庚子壬一正方形故开方而得甲庚甲壬之边皆为半和也于甲壬之半和减丁壬之半较得甲丁之阔于甲庚之半和加庚乙之半较得甲乙之长也又图甲乙丙丁长方形容积八尺将甲丁边引长作丁辛与丁丙等则甲辛为长阔之和又如甲乙边截甲丁于庚则庚丁为长阔之较甲辛和折半于己而庚丁较亦折半于己故以己为心甲为界作一半圜而引丙丁边至戊界作一戊丁直线戊巳辐线则甲巳戊己巳辛皆为半和而庚己己丁皆为半较且甲丁戊丁丁辛又为连比例之三线矣其戊丁中率自乗之方与甲丁首率丁辛末率相乗之长方等【见几何原本九卷第三节】则是戊丁自乗之方与原设甲乙丙丁长方之积等也又戊丁巳为勾股形其戊丁边自乗之方与己丁边自乗之方相并而与戊巳自乗之方等【见几何原本九卷第四节】故与原设甲乙丙丁长方积等之戊丁自乗之方加以己丁半较自乗之数开方而得戊巳为半和于戊巳相等之己辛半和减己丁半较而得丁辛与丁丙等之阔又与戊巳相等之甲巳半和加己丁半较而得甲丁之长也
设如有长方面积一千二百五十四尺纵多五尺问长阔各几何
法列积如开平方法商之其一千二百为初商积可商三十尺乃以三十尺书于原积二十尺之上而以初商三十尺加纵多五尺得三十五尺以初商三十尺乗之得一千零五十尺书于原积之下相减余二百零四尺为次商廉隅之共积乃以初商三十尺倍之得六十尺加纵多五尺得六十五尺为廉法以除二百零四尺足三尺则以三尺书于原积四尺之上而以廉法六十五尺加隅法三尺得六十八尺为廉隅共法以次商三尺乗之得二百零四尺书于余积之下与余积相减恰尽即知长方之阔得三十三尺加纵多五尺得三十八尺即为长方之长也如图甲乙丙丁长方形容积一千二百五十四尺其甲乙边长三十八尺甲丁边阔三十三尺其甲乙长比甲丁阔所多之甲辛即纵多之数其甲戊己庚长方形容积一千零五十尺即初商所减之积其辛壬与辛戊俱三十尺即初商数其甲戊三十五尺即初商加纵多之数其戊乙丑己壬己子癸两长方为两方廉庚壬癸丁小长方为纵廉方廉有二纵廉止一故倍初商加纵多数为廉法其己丑丙子为隅其长阔皆与次商等故以次商为隅法合两方廉一纵廉一小隅成一磬折形环附初商长方之两傍成一大长方与平方之理无异若次商仍减积不尽则又为两方廉一纵廉一小隅复成一磬折形得三商四商以至多商皆依此法递析开之
又法以积一千二百五十四尺用四因之得五千零一十六尺而以纵多五尺自乗得二十五尺加入四因之数得五千零四十一尺开方得七十一尺即为长阔相和之数乃以纵多五尺与长阔之和七十一尺相加得七十六尺折半得三十八尺即长方之长减纵多五尺即长方之阔也
又法先将纵多五尺折半得二尺五寸为半较自乗得六尺二十五寸与原积一千二百五十四尺相加得一千二百六十尺二十五寸开方得三十五尺五寸为半和于半和减半较得三十三尺为阔于半和加半较得三十八尺为长也
设如有长方面积一十八万一千四百六十丈纵多八丈问长阔各几何
法列积如开平方法商之其一十八万丈为初商积可商四百丈乃以四百丈书于原积八万丈之上而以初商四百丈加纵多八丈得四百零八丈以初商四百丈乗之得一十六万三千二百丈书于原积之下相减余一万八千二百六十丈为次商廉隅之共积乃以初商四百丈倍之得八百丈加纵多八丈得八百零八丈为防法以除一万八千二百六十丈足二十丈则以二十丈书于原积四百丈之上而以廉法八百零八丈加隅法二十丈得八百二十八丈为廉隅共法以次商二十丈乗之得一万六千五百六十丈书于余积之下与余积相减余一千七百丈为三商廉隅之共积乃以初商次商之二百四十丈俱倍之得八百四十丈加纵多八丈得八百四十八丈为廉法以除一千七百丈足二丈则以二丈书于原积空丈之上而以廉法八百四十八丈加隅法二丈得八百五十丈为廉隅共法以三商二丈乗之得一千七百丈书于余积之下与余积相减恰尽即知长方之阔得四百二十二丈加纵多八丈得四百三十丈即为长方之长也
又法以纵多八丈折半得四丈为半较自乗得十六丈与原积一十八万一千四百六十丈相加得一十八万一千四百七十六丈开方得四百二十六丈为半和于半和减半较得四百二十二丈为阔于半和加半较得四百三十丈为长也
设如有长方面积四万五千二百九十六尺纵多一百四十六尺问长阔各几何
法列积如开平方法商之其四万尺为初商积可商二百尺加纵多一百四十六尺得三百四十六尺以所商二百尺乗之得六万九千二百尺大于原积是初商不可商二百尺也乃改商一百尺书于原积四万尺之上而以所商一百尺加纵多一百四十六尺得二百四十六尺以初商一百尺乗之得二万四千六百尺书于原积之下相减余二万零六百九十六尺为次商廉隅之共积乃以初商一百尺倍之得二百尺加纵多一百四十六尺得三百四十六尺为廉法以除二万零六百九十六尺足五十尺则以五十尺书于原积二百尺之上而以廉法三百四十六尺加隅法五十尺得三百九十六尺为廉隅共法以次商五十尺乗之得一万九千八百尺书于余积之下与余积相减余八百九十六尺为三商廉隅之共积乃以初商次商之一百五十尺倍之得三百尺加纵多一百四十六尺得四百四十六尺为廉法以除八百九十六尺足二尺则以二尺书于原积六尺之上而以廉法四百四十六尺加隅法二尺得四百四十八尺为廉隅共法以三商二尺乗之得八百九十六尺书于余积之下与余积相减恰尽即知长方之阔得一百五十二尺加纵多一百四十六尺得二百九十八尺即为长方之长也此法原积初商应得二百尺因加纵多相乗得数大于原积故改商一百尺始合凡开带纵方遇此类者皆依此例推之
又法加纵多一百四十六尺折半得七十三尺为半较自乗得五千三百二十九尺与原积四万五千二百九十六尺相加得五万零六百二十五尺开方得二百二十五尺为半和于半和减半较得一百五十二尺为阔于半和加半较得二百九十八尺为长也
设如有长方面积一万六千一百二十八尺纵多七十二尺问长阔各几何
法列积如开平方法商之其一万为初商积可商一百尺加纵多七十二尺得一百七十二尺以初商一百尺乗之得一万七千二百尺大于原积是初商不可商一百尺也乃改商九十尺书于原积一百尺之上而以所商九十尺加纵多七十二尺得一百六十二尺以所商九十尺乗之得一万四千五百八十尺书于原积之下相减余一千五百四十八尺为次商廉隅之共积乃以初商九十尺倍之得一百八十尺加纵多七十二尺得二百五十二尺为廉法以除一千五百四十八尺足六尺则以六尺书于原积八尺之上而以廉法二百五十二尺加隅法六尺得二百五十八尺为廉隅共法以次商六尺乗之得一千五百四十八尺书于余积之下与余积相减恰尽即知长方之阔为九十六尺加纵多七十二尺得一百六十八尺即长方之长也此法原积初商应得一百尺因加纵多相乗得数大于原积故改商九十尺而原积一万尺之上应开百位者空其位而不计也或纵多太大过于初商所得之数则用四因积数之法或用纵多折半之法设例在后