御制历象考成后编

  亏用时距弧】日影心在庚辛庚
  为京师北极距天顶五十
  度五分干辛为日距北极
  六十八度二十一分四十
  七秒九八庚辛干角为日
  距午东一十二度三十二
  分五十八秒○五干庚为
  日距天顶二十一度一十
  分一十八秒二二在地则
  为初亏用时高下差一十
  九分二十六秒五三庚干
  辛角为初亏用时赤经高
  弧交角二十七度二十八
  分四十五秒一○与辛干
  甲赤白二经交角一十五
  度六分一十五秒八六相
  加得庚干甲角四十二度
  三十五分零百分秒之九
  十六为初亏用时白经高
  弧交角【赤经在高弧东白经又在赤经东故
  加】庚壬为初亏用时东西
  差一十三分九秒三五与
  甲癸等干壬为初亏用时
  南北差一十四分一十八
  秒九○以甲癸与甲己距
  弧相减余己癸二十七分
  五十秒四○以干壬与干
  甲相减余壬甲九分九秒
  五五与庚癸等用庚癸巳
  勾股形求得庚巳二十
  九分一十八秒四八为初
  亏用时两心视相距比并
  径小一分零百分秒之一
  十七则初亏真时必犹在
  用时前也乃以初亏用时
  两心视相距为一率初亏
  用时距分为二率初亏用
  时两心视相距小于并径
  之较为三率求得四率三
  分二十九秒一六为初亏
  近时距分与初亏用时相
  减【初亏用时两心视相距小于并径故减】得
  午初初刻六分一十八秒
  九七为初亏近时盖就食
  甚真时乙防立算与庚巳
  平行作乙子线与庚巳等
  即初亏用时两心视相距
  自丙至子作丙子线即初
  亏用时视行【即初亏用时距食甚定真
  时之视行】以时刻而论即初亏
  用时距分【即初亏用时距食甚定真时之
  时分】试将乙子线以并径之
  分引长至丑则子丑即初
  亏用时两心视相距小于
  并径之较又将丙子线引
  长至寅使子丑寅与子乙
  丙成同式形则乙子与行
  丙子弧时分之比即同于
  子丑与行子寅弧时分之
  比以子寅与丙子时分相
  加【初亏在食甚前时刻减而早则距食甚前之视
  行愈多故视行为加】得丙寅与丙丑
  等故以丑防为初亏近时
  之月影心丙丑为初亏近
  时距食甚之视行其乙丑
  两心视相距乃与并径等
  也【子丑寅与子乙丙为同式形则丙丑必长于丙
  寅然所差无多故以太隂视行临于丑防为初亏近
  时】
  初亏近时月影心在夘甲
  夘为初亏近时距弧四十
  二分三十四秒八四【以初亏近
  时与食甚用时相减余一时三十三分三十九秒九
  八与一小时两经斜距为比例得初亏近时距弧】日影心在辰辛辰为京师
  北极距天顶五十度五分
  辰辛干角为日距午东一
  十三度二十五分一十五
  秒四五辰干为日距天顶
  二十一度三十三分一十
  七秒九四在地为初亏近
  时高下差一十九分四十
  六秒六五辰干辛角为初
  亏近时赤经高弧交角二
  十八度五十八分五十七
  秒四二与辛干甲赤白二
  经交角相加得辰干甲角
  四十四度五分一十三秒
  二八为初亏近时白经高
  弧交角辰已为初亏近时
  东西差一十三分四十五
  秒六一与甲午等干巳为
  初亏近时南北差一十四
  分一十二秒三五以甲午
  与甲夘距弧相减余午夘
  二十八分四十九秒二三
  以干巳与干甲相减余巳甲
  九分一十六秒一○与辰午
  等用夘辰午勾股形求得辰
  夘三十分一十六秒四五
  为初亏近时两心视相距比
  初亏用时两心视相距大五
  十七秒九七而比并径仍小
  二秒二○则初亏真时必犹
  在近时前也乃以用近二时
  两心视相距之较五十七秒
  九七为一率近时距分三分
  二十九秒一六为二率用时
  两心视相距小于并径之较
  一分零百分秒之二十七为
  三率求得四率三分三十七
  秒一一与初亏用时相减得
  午初初刻

  六分一十一秒○二为初
  亏真时盖仍就乙防立算
  与辰夘平行作乙未线与
  辰夘等即初亏近时两心
  视相距自丙至未作丙未
  线即初亏近时视行试依
  乙未之分将初亏用时两
  心视相距之乙子线引长
  至土则子土即初亏用近
  二时两心视相距之较依
  丙未之分初亏用时视
  行之丙子线引长至木则
  子木即初亏用近二时两
  视行之较又依并径之分
  将乙子线引长至火与土
  木平行作火金线将丙木
  线引长合之于金则子火
  即初亏用真二时两心视
  相距之较子金即初亏用真
  二时两视行之较故子土与
  行子木弧时分之比即同于
  子火与行子金弧时分之比
  以子金与丙子相加得丙金
  与丙水等故以水防为初亏
  真时之月影心丙水为初亏
  真时距食甚之视行其乙水
  两心视相距乃与并径相等
  也于是以初亏真时依法求
  其两心视相距果得三十分
  一十八秒六五与并径合则
  初亏真时即为初亏定真时
  又以辰午与夘午之比同于
  半径与【如或大或小则又用比例求之】夘
  辰午角正切线之比而夘辰
  午角即并径如或大或小则
  又用比例求之
  白经交角与申辰午白经
  高弧交角相减【辰午与干甲平行即
  日影所当白道经圏故申辰午角与辰干甲角等申
  干高弧在夘辰午角之内故减在外则加】余夘
  辰申角为并径高弧交角
  日在辰月在夘夘辰为并
  径申干为高弧申为上干
  为下初亏方位为上偏右
  【边角俱用初亏定真时立算因与初亏近时相去不
  逺故借近时之图以明之】因即以并径
  立算故质名之曰并径高
  弧交角不必又求纬差角
  与黄道高弧交角相加减
  而后为定交角也复圆仿
  此



  求日食带食
  推日食带食法旧以初亏复圆距时之视行【带食在食甚前用初亏视行带食在食甚后用复圆视行】与日出入距食甚之时分【即帯食距时】为比例得日出入距食甚之视行【即带食距弧】而后与食甚视纬求其两心视相距下编仍之今推食甚先求两心视相距而后求视行初亏复圆止求两心视相距更不求视行则带食亦可迳求两心视相距不待先求视行矣且旧法推视行虽不见初亏食甚或不见食甚复圆皆犹多此一算今迳求两心视相距则以地平为断凡己初亏而带出者止求带出时之相距不用求初亏视行未复圆而带入者止求带入时之相距不用求复圆视行若己过食甚而带出者即以帯食视纬求复圆用时未及食甚而带入者即以帯食视纬求初亏用时固不用求视行亦不用求食甚其法甚为省便况视行不与白道平行带食之视纬必不与食甚等则迳求带食两心视相距而不用视行者其理尤为确凖也
  如雍正九年辛亥十二月
  庚寅朔日食帯食食甚用
  时辰正二刻一分五十一
  秒一六日出辰初一刻九
  分二十九秒二三在用时
  前四刻七分二十一秒九
  三以一小时两经斜距三
  十三分一十秒二三为比
  例得甲乙三十七分一十
  四秒五四为带食距弧甲
  为用时月影心乙为帯食
  月影心干甲为用时两心
  实相距四十三分三十七
  秒八○甲干乙角为帯食
  对距弧角四十度二十九
  分二秒二八干乙为帯食
  两心实相距五十七分二
  十一秒八一坎干甲角为
  赤白二经交角八度四十
  分五十秒六八【本时日在冬至后黄
  经在赤经西月在正交后白经又在黄经西故白经
  更在赤经西】坎干丙角为日出
  时赤经高弧交角四十五
  度四十分四十八秒三八
  【赤经在高弧东】内减坎干甲角余
  甲干丙角三十六度五十
  九分五十七秒七○为日
  出时白经高弧交角【赤经在高
  弧东白经在赤经西故以赤白二经交角与赤经高
  弧交角相减余为白经高弧交角】与甲干
  乙对距弧角相减余乙干
  丙角三度二十九分四秒
  五八为帯食对两心视相
  距角丙为带食日影心丙
  干为地平高下差五十九
  分二十秒二一用干乙丙
  三角形求得丙角五十九
  度一十一分一十七秒四
  七为帯食对两心实相距
  角即帯食方位角与半周
  相减余乙丙丁角一百二
  十度四十九分为帯食视
  距高弧交角【方位角止用度分故不计
  秒】丁为上干为下帯食方
  位为右偏下又求得乙丙
  邉四分三秒五七为帯食
  两心视相距与日月实并
  径三十二分二十一秒四
  四相减余二十八分一十
  七秒八七以日全径三十
  二分四十六秒作十分为
  比例得八分三十八秒一
  七即帯食分秒也
  又法以甲干丙白经高弧
  交角及丙干高下差求得
  戊丙东西差三十五分四
  十二秒五六与甲己等干
  戊南北差四十七分二十
  三秒三三以干甲实纬与
  干戊南北差相减余戊甲
  三分四十五秒五三与丙
  己等为带食视纬以甲己
  东西差与甲乙带食距弧
  相减余乙己一分三十一
  秒九八为带食视距弧用
  乙丙己勾股形求得乙丙
  四分三秒五七为带食
  两心视相距与前所得数
  同又以丙己与乙己之比
  同于半径一千万与丙角
  正切线之比而得丙角二
  十二度一十一分一十五
  秒与干丙己白经高弧交
  角相加【干丙己角与甲干丙角等】得乙
  丙干角五十九度一十一
  分与半周相减余乙丙丁
  角一百二十度四十九分
  为带食视距高弧交角亦
  与前所得数同此乙丙视
  距未与视行成直角【甲乙虽非
  视行然相去不逺】带食在食甚前
  必按求食甚真时之法求
  得真时两心视相距再求
  复圆用时如带食在食甚
  后者则不用求食甚即以
  丙己带食视纬为勾丙庚
  并径为求得己庚股与
  乙己带食视距弧相加得
  乙庚为复圆距弧【甲乙带食距弧
  大于东西差乙庚大于己庚故加若甲乙带食距弧
  小于东西差而乙庚小于己庚则减】以一小
  时两经斜距为比例卽得
  复圆距时与日出时刻相
  加即得复圆用时也【带食出地
  复圆在日出后故加若带食入地初亏在日入前则
  减】带食入地者仿此












  御制歴象考成后编卷三
<子部,天文算法类,推步之属,御制历象考成后编>
  钦定四库全书
  御制厯象考成后编卷四
  日躔歩法
  推日躔用数
  推日躔法
  月离歩法
  推月离用数
  推月离法
  用表推月离法







  推日躔用数
  雍正元年癸卯天正冬至为元
  周天三百六十度【入算化作一百二十九万六千秒】
  周日一万分
  周岁三百六十五日二四二三三四四二
  纪法六十
  宿法二十八
  太阳毎日平行三千五百四十八秒小余三二九○八九七【太阳每日平行五十九分零八秒一十九微四十四纤四十三忽二十二芒以秒法通之即得】
  最卑每岁平行六十二秒小余九九七五【最卑每岁平行一分二秒五十九微五十一纤零八忽以秒法通之即得】
  最卑每日平行十分秒之一又七二四八【最卑每日平行十微二十纤五十六忽以秒法通之即得】
  太阳本天大半径一千万小半径九百九十九万八千五百七十一小余八五
  两心差十六万九千
  气应三十二日一二二五四【气应者癸卯年天正平冬至距甲子日子正初刻之日分乃丙申日丑正三刻十一分有奇也○按下编康熙二十三年甲子气应为七日六五六三七四九二六依法以求癸卯年天正冬至则得三十二日一○一六八七四今所定气应迟百分日之二又○八五二六于时差二刻于经度差一分十四秒而纬度则无差也葢算家推测惟凭春秋分而推测之法则以所测之视髙度减蒙气差加地半径差而得太阳之实髙度然后以距纬求其经度而得节气时刻焉上编谓春秋分太阳髙五十度无蒙气差而加地半径差一分五十六秒今法谓地半径差甚微可以不计而减蒙气差五十秒故所测视髙度虽同而所推实髙度恒低二分四十六秒则经度必差六分五十八秒春分日道自南而北时刻必差而迟秋分日道自北而南时刻必差而早故春分均数少加六分五十八秒秋分均数少减六分五十八秒则所推与所测合矣然今所测之视髙度春分又比前低二十七秒秋分又比前髙二十七秒则经度又差一分十四秒时刻皆差而迟故定气应迟二刻则经度即减一分十四秒纬度即差二十七秒而春秋分之视髙乃与实测脗合也】
  宿应二十七日一二二五四【宿应者癸卯年天正平冬至距角宿値日子正初刻之日分乃轸宿値日丑正三刻十一分有奇也】
  最卑应八度七分三十二秒二十二微【最卑应者癸卯年天正平冬至次日子正初刻最卑过冬至之度分也○按下编甲子年最卑应为七度一十分一十一秒一十微依法以求癸卯年最卑应则得七度四十九分五十六秒四十微今所定最卑应多十七分三十五秒四十二微葢旣改定均数则春分以加少而迟秋分以减少而早与实测合矣然逐节气测之春分前之所迟秋分前之所早者较多春分后之所迟秋分后之所早者较少故定最卑应多十七分有奇则引数即少十七分有奇春分前加均以渐而多引数少则加者少故迟者遂多春分后加均以渐而少引数少则加者多故迟者遂少秋分前减均以渐而多引数少则减者少故早者遂多秋分后减均以渐而少引数少则减者多故早者遂少而春秋分之前后乃皆与实测脗合也】