- 首页
- 子藏
- 算法
- 御制历象考成后编
御制历象考成后编
戊己辛二道交角等是为最
大过此又渐小【壬己辛角戊己癸角
皆九十度】夏至日行在辛则黄
赤二经又合为一线无交角
夏至后日行自北而南黄经
必在赤经东渐逺则角又渐
大至秋分而止如日行在丑
壬丑黄经在癸丑己子壬角
九十度壬己辛角戊己癸角
赤经东壬丑癸角为黄赤
二经交角即癸丑辛黄道
赤经交角之余【癸丑辛角与寅丑夘
角等】秋分日行在寅壬寅黄
经在癸寅赤经东壬寅癸
角为黄赤二经交角与丙
寅辛二道交角等过此又
渐小至冬至乃复合为一
线也至白道之交于黄道
亦如黄道之交于赤道但
其行度自正交起算交食
时日月又必近交故其南
北东西及两经交角惟以
两交为定设白极在辰正
交在午白道自南而北【犹黄
道之春分】日行在正交防如午
或正交前如子正交后如
巳白经皆在黄经西黄白
二经交角皆与黄白二道
交角为相等【惟日在正交午防其壬午
辰黄白二经交角与庚午未黄白二道交角等若在
交前如子交后如巳其壬子辰与壬巳辰黄白二经
交角皆微小于二道交角然所差无多故为相等与
上编捷法同】此黄经在赤经西
白经又在黄经西则以黄
白二经交角与黄赤二经
交角相加为赤白二经交
角也设白极在申中交在
酉白道自北而南【犹黄道之秋分】日行在中交防如酉或中
交前如子中交后如已白
经皆在黄经东黄白二经
交角亦与黄白二道交角
为相等此黄经在赤经西
而白经在黄经东则以黄
白二经交角与黄赤二经
交角相减为赤白二经交
角黄赤二经交角大则从
黄经之向白经亦在赤经
西也设黄经在赤经西而
中交近二至经圏如戌亥
戌白经在壬戌黄经东壬
戌亥黄白二经交角反大
于壬戌癸黄赤二经交角
相减余癸戌亥角为赤白
二经交角则从白经之向
白经转在赤经东也旣得
赤白二经交角是为初亏
食甚复圆同用之数【初亏至复
圆太阳行度无几故二经交角不改】随时求
得赤经高弧交角与之加
减即得各时白经高弧交
角如日行在子是为午后
甲子癸角为赤经高弧交
角辰子癸角为赤白二经交
角此赤经在高弧西白经又
在赤经西则相加得辰子甲
角为白经高弧交角白经更
在高弧西是知太阳在白平
象限西也又如日行在己是
为午前甲己癸角为赤经高
弧交角辰己癸角为赤白二
经交角此赤经在高弧东白
经在赤经西则相减余甲己
辰角为白经高弧交角赤白
二经交角大白经为在高弧
西是知太阳虽在午东而却
在白平象限西也盖惟太阳
正当白平象限则白道经圏
过天顶与高弧合为一线限
东者白经
必在高弧东限西者白经必
在高弧西是定白经之东西
与白平象限一理也又与白
道平行作干坎线则辰子坎
角为九十度甲子坎角为白
道高弧交角与干子艮角等
甲子辰白经高弧交角即甲
子坎角之余是用白经高弧
交角与用白道高弧交角一
理也又如癸丁北极出地二
十八度赤道距天顶之甲震
弧亦二十八度春分巳防在
午西夏至前巽防当正午震
巽距赤道北二十三度余正
交在离巽甲距黄道北又四
度余则白道在天顶与高弧
合日行在
离甲离癸赤经高弧交角与
癸离坤赤白二经交角相加
得甲离坤白经高弧交角适
足九十度盖白经与白道相
交其角必九十度白道既与
高弧合故白经高弧交角亦
九十度也过此以徃北极愈
低则白道极北入地平下南
出地平上白道即在天顶北
白经高弧交角即大于九十
度而成钝角则与半周相减
余为白道南之经圏与高弧
相交之角是不求限距地高
而白平象限在天顶之南北
俱以白经高弧交角为定也
白经在赤经东者仿此
求高下差
高下差者日月高下之视差也日食食甚用时乃从地心立算人在地面视之则有地半径差而太阳地半径差恒小太隂地半径差恒大故于太隂地半径差内减去太阳地半径差始为高下差焉【见上编日食三差及日月地半径差篇】如日月实高本系同度而太阳以地半径差之故视高比实高低五秒太隂以地半径差之故视高比实高低三十分则人之视太隂必比太阳低二十九分五十五秒也然求两地半径差而后相减其法甚繁今按半径一千万与日月距天顶正之比既皆同于地平地半径差与本时地半径差之比【见本编日躔地半径差篇】而全与全之比又原同于较与较之比则以半径一千万与日距天顶之正之比【交食时日月高弧畧相等故即以日高弧为月高弧】必亦同于地平高下差与本时高下差之比矣故今求高下差唯以本时太隂距地数求得太隂地平地半径差内减太阳地平地半径差十秒余为地平高下差初亏食甚复圆各以其时日距天顶之正为比例其法甚为省便也
如图甲为地心乙为地面丙
丁为日天戊己为月天假如
日在庚实距天顶为丙甲庚
角视距天顶为丙乙庚角与
丙甲丁角等其差庚甲丁角
即地平太阳地半径差与甲
庚乙角等甲乙地半径即其
角之正与庚辛等又如日
在壬实高为壬甲丁角视高
为壬乙庚角与癸甲丁角等
其差壬甲癸角即本时太阳
地半径差与甲壬乙角等将
壬乙线引长作甲子垂线即
其角之正与壬丑等甲乙
子勾股形子角为直角乙角
与丙乙壬角为对角即太阳
视距天顶
之度甲乙即地平太阳地半
径差之正甲子即本时太
阳地半径差之正因其边
度甚小正与弧线可以相
为比例则甲乙即为地平太
阳地半径差与庚丁弧等甲
子即为本时太阳地半径差
与壬癸弧等故以子直角正
与乙角正之比即同于
地平太阳地半径差甲乙与
本时太阳地半径差甲子之
比也假如太隂在寅实距天
顶为寅甲戊角视距天顶为
寅乙戊角与已甲戊角等其
差寅甲巳角即地平太隂地
半径差与甲寅乙角等甲乙
地半径亦
其角之正【甲乙同为地半径甲庚日
天半径大故角小甲寅月天半径小故角大】与
寅夘等又如月在辰实高为
辰甲己角视高为辰乙寅角
与巳甲己角等其差辰甲巳
角即本时太隂地半径差与
甲辰子角等甲子亦其角之
正与辰午等因以正作
弧度则甲乙即地平太隂地
半径差与寅己等甲子即
本时太隂地半径差与辰巳
弧等故以子直角正与乙
角太隂视距天顶正之比
亦同于地平太隂地半径差
甲乙与本时太隂地半径差
甲子之比也试以日天半径
与月天半径为甲乙同为地
半径甲庚日天半径大故角
相等而比较之【日天月天半径不等
故地半径虽等而差角不等今以日天半径与月天
为相等则差角之不等者其正亦不等乃可相较
也】自地平太阳实高线割
月天之未防与乙庚视高
线平行作未申线则甲未
申角与甲庚乙角等甲申
即地平太阳地半径差【甲申
本系甲未申角之正因以正作弧度则甲申正
与未已弧等而月天之未已弧与日天之庚丁弧
同当庚甲丁角其度相等故甲申即为地平太阳地
半径差】与甲乙地平太隂地
半径差相减余申乙即地
平高下差【甲乙当寅已弧甲申当未巳弧
乙申当寅未弧】自本时太阳实高
线割月天之酉防与乙壬
视高线平行作酉申线引
长至戌则甲酉戌角与甲
壬乙角等甲戌即本时太
阳地半径差与甲子本时
太隂地半径差相减余戌
子即本时高下差与申亥
等【甲子当辰巳弧甲戌当酉巳弧子戌当辰酉弧】申乙亥与甲乙子为同式
形故以亥直角正与乙
角日距天顶正之比亦
即同于地平高下差申乙
与本时高下差申亥之比
也
右求高下差以半径与太
阳视距天顶之正为比
例今日食所推太阳高弧
乃实距天顶之度而即以
其正比例高下差者盖
实高与视高所差无多故
借用之自来实高视高相
求皆同一地半径差加减互
用不列二表也如细辨之地
平太阳实高在丁太隂实高
在已丁乙庚角为地平太阳
地半径差与甲丁乙角等甲
乙地半径为其角之切线当
庚丁弧巳乙辛角为地平太
隂地半径差与甲己乙角等
亦以甲乙地半径为其角之
切线当辛巳弧前以地半径
为其角之正此以地半径
为其角之切线其角度虽有
微差然最大者不过半秒愈
高则愈小故亦以弧度为比
例而甲乙即为地平太阳地
半径差亦即为地平太隂地
半径差也
本时太阳实高在壬太隂在
癸壬乙子角为本时太阳地
半径差与甲壬乙角等乙丑
为其角之垂线当子壬弧癸
乙寅角为本时太隂地半径
差与甲癸乙角等亦以乙丑
为其角之垂线当寅癸弧丑
壬之长小于甲壬丑癸之长
小于甲癸则角度必较弧度
为稍大盖视高低于实高其
大固宜然所差甚微故亦以
弧度为比例而乙丑即为本
时太阳地半径差亦即为本
时太隂地半径差也试自地
平太阳视髙线割月天之卯
防与甲丁实高线平行作卯
辰线则乙
夘辰角与甲丁乙角等乙辰
当辛夘弧即地平太阳地半
径差以乙辰与地平太隂地
半径差甲乙相减余甲辰当
夘已弧即地平高下差自本
时太阳视高线割月天之巳
防与甲壬实高线平行作巳
辰线则乙巳辰角与甲壬乙
角等乙午当寅巳弧即本时
太阳地半径差以乙午与本
时太隂地半径差乙丑相减
余午丑与辰未等当巳癸弧
即本时高下差甲乙丑与甲
辰未为同式形丑未二角为
直角甲角为日月实距天顶
之度故以直角正与实距
天顶正
之比同于地平地半径差甲
乙与本时地半径差乙丑之
比亦同于地平高下差甲辰
与本时高下差辰未之比也
今日食用简平仪法求地面
日影心之所在皆用实高比
例高下差设日实高在丁则
正射地心照至地面酉防之
影当月天巳防之度照至地
面乙防之影当月天夘防之
度是酉乙地面上应日天实
距天顶之丙丁弧而其当月
天之度则为夘巳高下差也
设日实高在壬则正射地心
照至地面申防之影当月天
癸防之度照至地面乙防之
影当月天
巳防之度是乙申地面上
应日天实距天顶之丙壬
弧而其当月天之度则为
巳癸高下差也若以地平
高下差为半径作地面平
圆则甲乙即夘巳之度为
地平 【等】高下差当乙酉地
【以地球为平面则地面之弧与正等甲乙为乙酉
弧之正故甲乙当乙酉弧】面与日天
之丙丁弧等乙丑即巳癸
之度为本时高下差当乙
申地【乙丑为乙申弧之正故乙丑当乙申弧】面与日天之丙壬弧等由
此推之时时实距天顶之
度在地面皆与本时高下
差【实距天顶之度原与地面之弧度等简平仪以
地球为平面则地面之弧又与地面之正等今地
面之正既为高下差故实距天顶之度即与高下
差等】故随高弧之所向以高下
差之度自圆心取之即日影
心之所在随白经之所向以
实纬之度自圆心取之即月
影心之所在此所以用实高
为比例于视差之理尤为显
而易明也差等
求日食食甚真时及两心视相距
日食求食甚真时及食甚视纬新法算书用浑天仪法以食甚用时之东西差与食甚近时之东西差相较得视行以用时之东西差比例得时分与食甚用时相加减【限西加限东减】而得食甚真时以真时之南北差与食甚实纬相加减【白平象限在天顶南纬南则加纬北则减白平象限在天顶北纬南则减纬北则加】而得食甚视纬上编言之详矣【见日食三限时刻及求食甚真时食甚视纬篇】然其求真时也必求太隂视行正当实纬之度乃以视行之道与白道为平行故与实纬成直角而视纬与实纬必合为一线也夫近时之东西差与用时之东西差既不等【因白道髙弧交角及高下差不同之故】则南北差亦不等而视行即不与白道平行视行既不与白道平行则实纬即不与视行成直角而日月两心相距最近之线亦不与实纬合为一线矣近日西法用简平仪绘图算【浑仪从上视如观平面是为简平仪】以本日地平高下差【本日地平日月两地半径差相减余为本日地平高下差】为半径作平圆【即地径当月天之度】即地受日照之半面上应浑天半周圆心即日射地面至地心之防以人视日则人所处之地面即日影心以日照月则月所当之地面即月影心假令人所处之地面正在圆心则必见日当天顶又正当子午圏而月之实纬即日月两心视相距外此则日影心之所在随时随地不同若日影心与月影心同防则必见日全食若日影心与月影心之相距大于并径则不见食故先以食甚用时求其两心视相距复设一时【限西向后设限东向前设】亦求其两心视相距以此两视距线及所夹之角求其对边为视行自日影心至视行作垂线与视行成直角是为两心相距最近之处月影心临此直角之防即为食甚真时因垂线不与实纬合故不曰视纬而曰两心视相距然后以所得真时复考其两心视相距果与所求垂线合则食甚真时即为定真时不然则又作垂线求之盖太隂视差时时不同其视行之道既不与白道平行又不能自成直线其两心视相距最近之线不与白道成直角而与视行成直角【两心实相距不与白道成直角而与斜距成直角两心视相距又不与斜距成直角而与视行成直角今法与旧法之不同在此】故反覆推求务得太隂正当视行直角之防斯为两心最近之处而食甚乃为确凖也是法也可以图代算可以一图而知各地见食之不同新奇精巧与旧法迥殊然其理无不可以相通盖旧法以浑测浑可实指其东西南北之差而视行之法甚简新法写浑于平可实稽其实距视距之异而视差之理尤精今以新法合旧名义防观而详觧之则理之确者以并观而并明法之奇者因相较而益显庶观者由旧径以适新途不致有捍格之势而算者取新规以合旧范更坐収密合之方矣