几何原本

  在圜界依前论令戊甲大于戊乙亦不可通也第三题
  直线过圜心分他直线为两平分其分处必为两直角为两直角必两平分
  解曰乙丙丁圜有丙戊线过甲心分乙丁线为两平分于己题言甲己必是垂线而
  己旁为两直角又言己旁既为两直角则甲己分乙丁必两平分
  先论曰试从甲作甲乙甲丁两线即甲乙己角形之乙己与甲丁己角形之丁己两边等甲己同边甲乙甲丁两线俱从心至界又等即两形等则其对等边之甲己乙甲己丁亦等【一卷八】而为两直角矣
  后论曰如前作甲乙甲丁两线甲乙丁角形之甲乙甲丁两边既等则甲乙丁甲丁乙两角亦等【一卷五】又甲乙己角形之甲己乙甲乙己两角与甲丁己角形之甲己丁甲丁己两角各等而对直角之甲乙甲丁两边又等则己乙己丁两边亦等【一卷廿六】
  欲显次论之防又有一説如甲丁上直角方形与甲己己丁上两直角方形并等【一卷四七】而甲乙上直角方形与甲己乙己上两直角方形并亦等即甲己己乙上两直角方形并与甲己己丁
  上两直角方形并亦等此二率者每减一甲己上直角方形则所存乙己己丁上两直角方形自相等而两边亦等
  第四题
  圜内不过心两直线相交不得俱为两平分
  解曰甲丙乙丁圜内有甲乙丙丁两直线俱不过己心【若一过心一不过心即两线不得俱为两平分其理易显】
  而交于戊题言两直线或有一线为两平分不得俱为两平分
  论曰若云不然而甲乙丙丁能俱两平分于戊试令寻本圜心于己【本篇一】从己至戊作甲乙之垂线其己戊既分甲乙为两平分即为两直角【本篇三】而又能分丙丁为两平分亦宜为两直角是己戊甲为直角而己戊丙亦直角全与其分等矣
  第五题
  两圜相交必不同心
  解曰甲乙丁戊乙丁两圜交于乙于丁题言两圜不同心
  论曰若言丙为同心令自丙至乙至甲各作直线其丙乙至圜交而丙甲截两圜之界于戊于甲夫丙既为戊乙丁圜之心则丙乙与丙
  戊等而又为甲乙丁圜之心则丙乙与丙甲又等是丙戊与丙甲亦等而全与其分等也
  第六题
  两圜内相切必不同心
  解曰甲乙丙乙两圜内相切于乙题言两圜不同心
  论曰若言丁为同心令自丁至乙至丙各作直线其丁乙至切界而丁丙截两圜之界于甲于丙夫丁既为甲乙圜之心则丁乙与丁甲等而又为丙乙圜之心则丁乙与丁丙又等是丁甲与丁丙亦等而全与其分等也
  第七题
  圜径离心任取一点从点至圜界任出几线其过心线最大不过心线最小余线愈近心者愈大愈近不过心线者愈小而诸线中止两线等
  解曰甲丙丁戊乙圜其径甲乙其心己离心任取一点为庚从庚至圜界任出几线为庚丙庚丁庚戊题先言从庚所出诸线惟过心庚甲最大次言不过心庚乙最小三言庚丙大于庚丁庚丁大于庚戊愈近心愈大愈近庚乙愈小后言庚乙两旁止
  可出两线等
  先论曰试从已心出三线至丙至丁至戊其丙己庚角形之丙己己庚两边并大于丙庚一边【一卷二十】而丙己己庚等于甲己己庚则庚甲大于庚丙依显庚丁庚戊俱小于庚甲是庚甲最大
  次论曰己庚戊角形之己戊一边小于己庚庚戊两边并【一卷二十】而己戊与己乙等则己乙小于己庚庚戊并矣次各减同用之己庚则庚乙小于庚戊依显庚戊小于庚丁庚丁小于庚丙是庚乙最小
  三论曰丙己庚角形之丙己与丁己庚角形之丁己两边等己庚同边而丙己庚角大于丁己庚角【全大于分】则对大角之庚丙边大于对小角之庚丁边【一卷廿四】依显庚丁大于庚戊而愈近心愈大愈近庚乙愈小后论曰试依戊己乙作乙己辛相等角而抵圜界为己辛线次从庚作庚辛线其戊己庚角形之戊己腰与庚己辛角形之辛巳腰既等己庚同腰两腰间角又等则对等角之庚戊庚辛两底亦等【一卷四】而庚乙两旁之庚戊庚辛等矣此外若有从庚出线在辛之上即依第三论大于庚辛在辛之下即小于庚辛故云庚乙两旁止可出庚戊庚辛两线等
  第八题
  圜外任取一防从防任出几线其至规内则过圜心线最大余线愈离心愈小其至规外则过圜心线为径之余者最小余线愈近径余愈小而诸线中止两线等
  解曰乙丙丁戊圜之外从甲防任
  出几线其一为过癸心之甲壬其
  余为甲辛为甲庚为甲己皆至规
  内【规内线者如车辐之指牙】题先言过心之甲
  壬最大次言近心之甲辛大于离心之甲庚甲庚又大于甲己三反上言规外之甲乙为乙壬径余者【规外线者如车辐之凑毂】最小四言甲丙近径余小于甲丁甲丁又小于甲戊后言甲乙两旁止可出两线等
  先论曰试从癸心至丙丁戊己庚辛各出直线其甲癸辛角形之甲癸癸辛两边并大于甲辛一边【一卷二十】而甲癸癸辛与甲壬等则甲壬大于甲辛依显甲壬更大于甲庚甲己而过心之甲壬最大
  次论曰甲癸辛角形之癸辛与甲癸庚角形之癸庚两边等甲癸同边而甲癸辛角大于甲癸庚角【全大于分】则对大角之甲辛边大于对小角之甲庚边【一卷廿四】依显甲庚大于甲己而规内线愈离心愈小
  三论曰甲癸丙角形之甲癸一边
  小于甲丙丙癸两边并【一卷二十】次每
  减一相等之乙癸丙癸则甲乙小
  于甲丙矣依显甲乙更小于甲丁
  甲戊而规外甲乙最小
  四论曰甲丁癸角形之内从甲与癸出甲丙丙癸两边并小于甲丁丁癸两边并【一卷廿一】此二率者每减一相等之丙癸丁癸则甲丙小于甲丁矣依显甲丙更小于甲戊而愈近径余甲乙者愈小
  后论曰试依乙癸丙作乙癸子相等角抵圜界次作甲子线其甲子癸角形之甲癸癸子两腰与甲癸丙角形之甲癸癸丙两腰各等而两腰间角又等则对等角之甲子甲丙两底亦等也【一卷四】此外若有从甲出线在子之上即依第四论小于甲丙在子之下即大于甲丙故云甲乙两旁止可出甲丙甲子两线等第九题
  圜内从一防至界作三线以上皆等即此防必圜心解曰从甲防至乙丙丁圜界作甲乙甲丙甲丁三直线若等题言甲防为圜心三以上等者更不待论
  论曰试于乙丙丙丁界作乙丙丙丁两直线相聨此两线各两平分于戊于己从甲出两直线为甲戊为甲己其甲乙戊角形
  之甲乙与甲戊丙角形之甲丙两腰既等甲戊同腰乙戊戊丙两底又等即甲戊乙与甲戊丙两角亦等【一卷八】为两直角依显甲己丙甲己丁亦等为两直角则甲戊甲己之分乙丙丙丁俱平分为直角而此两线俱为函心线【本篇一之系】定相遇于甲甲为圜心矣又论曰若言甲非心心在于戊者令戊甲相聨引作己庚径线即甲是戊心外所取一防而从甲所出线愈近心者宜愈大矣
  【本篇七】则甲丁宜大于甲丙而先设等何也
  第十题
  两圜相交止于两防
  论曰若言甲乙丙丁戊己圜与甲庚乙丁辛戊圜三相交于甲于乙于丁令作甲乙乙丁两直线相联此两线各两平分于壬于癸次从壬癸作子壬子癸两垂线其子
  壬分甲乙子癸分乙丁既皆两平分而各为两直角即子壬子癸两线俱为甲庚乙丁辛戊圜之函心线【本篇一之系】而子为其心矣依显甲乙丙丁戊己圜亦以子为心也夫两交之圜尚不得同心【本篇五】何縁得有三交
  又论曰若言两圜三相交于甲于乙于丁令先寻甲庚乙丁辛戊圜之心于壬【本篇一】次从心至三交界作壬甲壬乙壬丁三线此三线等也【一卷界説十五】又甲乙丙丁戊己圜内有从壬出之壬甲壬乙壬丁三相等线
  则壬又为甲乙丙丁戊己圜之心【本篇九】不亦交圜同心乎【本篇五】
  第十一题
  两圜内相切作直线联两心引出之必至切界
  解曰甲乙丙甲丁戊两圜内相切于甲而己为甲乙丙之心庚为甲丁戊之心题言作直线聨庚己两心引抵圜界必至甲
  论曰如云不至甲而截两圜界于乙丁及丙戊令从甲作甲己甲庚两线其甲己庚角形之庚己己甲两邉并大于庚甲一邉【一卷二十】而同圜心所出之庚甲庚丁宜等即庚己己甲大于庚丁矣此二率者各减同用之庚己即己甲亦大于己丁矣夫己甲与己乙是内圜同心所出等线则己乙亦大于己丁而分大于全也可乎若曰庚为甲乙丙心己为甲丁戊心亦依前转説之甲己庚角形之己庚庚甲两邉并大于甲己一邉【一卷二十】而同圜心所出之己甲己戊宜等即己庚庚甲大于己戊矣此二率者各减同用之己庚即庚甲大于庚戊矣夫庚甲与庚丙是内圜同心所出等线则庚丙
  亦大于庚戊而分大子全也可乎
  第十二题
  两圜外相切以直线联两心必过切界
  解曰甲乙丙丁乙戊两圜外相切于乙其甲乙丙心为己丁乙戊心为庚题言作己庚直线必过乙论曰如云不然而己庚线截两圜界于戊于丙令于切界作乙己乙庚两线其乙己庚角形之己乙乙庚两边并大于己庚一边而乙
  庚与庚戊乙己与己丙俱同心所出线宜各等即庚戊丙己两线并亦大于庚己一线矣【一卷二十】夫庚己线分为庚戊丙己尚余丙戊而云庚戊丙己大于庚己则分大于全也故直线聨己庚必过乙
  第十三题【二支】
  圜相切不论内外止以一防
  先论曰甲乙丙丁与甲戊丙己两圜内相切若云有两防相切于甲又于丙令作直线函两圜心庚辛引出之如前图宜至相切之甲之丙【本篇十一】则甲丙为两圜之同径矣而此径线者两平分于庚又两平分于辛何也【一直线止以一防两平分】若云庚辛引出直线
  一抵甲一截两圜之界于癸于壬即如后图令从两心各作直线至又相切之丙次问之甲乙丙丁圜之心为庚邪辛邪如曰庚也而辛为甲戊内己之心则丙庚辛角形之庚辛辛丙两边并大于庚丙一边【一卷二十】而庚辛辛丙与庚癸宜等【辛癸辛丙同圜心所出故】即庚癸亦大于庚丙矣夫庚丙与庚壬者外圜同心所出等线也将庚癸亦大于庚壬可乎如曰辛也而庚为甲戊丙己之心则丙庚辛角形之辛庚庚丙两边并大于辛丙一边【一卷二十】而辛丙与辛甲宜等即辛庚庚丙亦大于辛甲矣此二率者各减同用之辛庚即庚丙亦大于庚甲也夫庚甲与庚丙者亦同圜心所出等线也而安有大小
  后论曰甲乙与乙丙两圜外相切于已从甲乙之丁心丙乙之戊心作直线相聨必过已【本篇十三】若云又相切于乙令自乙至丁至戊各
  作直线其丁乙乙戊并宜与丁戊等而为角形之两腰又宜大于丁戊【一卷二十】则两圜相切安得两防又后论曰更令于两相切之乙之己作直线相聨其直线当在甲乙圜内【本篇二】又当在乙丙圜内何所置之
  第十四题【二支】
  圜内两直线等即距心之逺近等距心之逺近等即两直线等
  先解曰甲乙丙丁圜其心戊圜内甲乙丁丙两线等题言两线距戊心逺近亦等
  论曰试从戊心向甲乙作戊己向丁丙作戊庚各垂线次自丁自甲至戊各作直线其戊己戊庚既各分甲乙丁丙线为两平
  分【本篇三】而甲乙丁丙等则平分之甲己丁庚亦等夫甲戊上直角方形与甲己己戊上两直角方形并等【一卷四七】等甲戊之丁戊上直角方形与丁庚庚戊上两直角方形并等而甲己丁庚上两直角方形既等即戊己戊庚上两直角方形亦等则戊己戊庚两线亦等是甲乙丁丙两线距心之度等【本卷界説四】
  后解曰甲乙丁丙两线距戊心逺近等题言甲乙丁丙两线亦等
  论曰依前论从戊作戊己戊庚两垂线既等【本卷界説四】而分甲乙丁丙各为两平分【本篇三】其甲戊上直角方形与甲己己戊上两
  直角方形并等【一卷四七】等甲戊之丁戊上直角方形与丁庚庚戊上两直角方形并等即甲己己戊上两直角方形并与丁庚庚戊上两直角方形并亦等此二率者每减一相等之己戊戊庚上直角方形即所存甲己丁庚上两直角方形亦等是甲己丁庚两线等也夫甲乙倍甲己丁丙倍丁庚其半等其全必等第十五题
  径为圜内之大线其余线者近心大于逺心
  解曰甲乙丙丁戊己圜其心庚其径甲己其近心线为辛壬逺心线为丙丁题言甲乙最大辛壬近心大
  于丙丁逺心
  论曰试从庚向丙丁作庚癸向辛壬作庚子各垂线其丙丁距心逺于辛壬即庚癸
  大于庚子【本卷界説四】次于庚癸线截庚丑与庚子等次从丑作乙戊为庚癸之垂线末于庚乙庚丙庚丁庚戊各作直线相联其庚丑既等于庚子即乙戊与辛壬各以垂线距心逺近等【本卷界説四】而两线亦等【本篇十四】夫庚乙庚戊并大于乙戊【一卷二十】而与甲己等即甲己大于乙戊亦大于辛壬矣依显甲己大于他线则甲己最大又乙庚戊角形之乙庚庚戊两腰与丙庚丁角形之丙庚庚丁两
  腰等而乙庚戊角大于丙庚丁角则乙戊底大于丙丁底【一卷廿四】故等乙戊之辛壬亦大于丙丁也是近心线大于逺心线也
  第十六题【三支】
  圜径末之直角线全在圜外而直线偕圜界所作切边角不得更作一直线入其内其半圜分角大于各直线鋭角切边角小于各直线鋭角
  先解曰甲乙丙圜丁为心甲丙为径从甲作甲丙之垂线题言此线全在圜外论曰若言在内如甲乙令自丁至乙作
  直线即丁甲乙与丁乙甲两角等【一卷五】丁甲既为直角丁乙又为直角乎夫角形三角并等两直角【一卷十七】岂得形内自有两直角也则垂线必在圜外若己戊必不在圜内若甲乙又不在圜界之上【如云在界亦依此论】故曰全在圜外
  次解曰题又言戊甲垂线偕乙甲圜界所作切边角不得更作一直线入其内
  论曰若云可作如庚甲令从丁心向庚甲作丁辛为庚甲之垂线【一卷十二】夫丁甲辛角形之丁甲辛丁辛甲两角并小于
  两直角【一卷十七】而丁辛甲为直角即对小角之丁辛线小于对大角之甲丁线矣【一卷十九】甲丁者与丁壬为同圜相等者也将丁壬亦大于丁辛乎则戊甲乙角之内不得更作一直线而戊甲之下但有直线必入本圜之内也
  后解曰题又言丁甲垂线偕乙甲圜界所作丙甲乙圜分角大于各直线鋭角而戊甲垂线偕乙甲圜界所作切边角小于各直线鋭角