测圆海镜分类释术

  其法曰初商三百 置一于左上为法 置一自之以乘从二亷得八千一百万与上法相乘得二百四十三亿为益实加入原实共五百六十七亿为实 置一乘从一亷得二千七百一十八万为益亷 置一自乘再乘得二千七百万以隅算二分五厘因之得六百七十五万为隅法 并从方从益亷隅法共一亿九千六百二十九万为下法与上法相乘除实五百八十八亿八千七百万实不满法反除实五百六十七亿余二十一亿八千七百万为负积 四因隅法得二千七百万为方法初商自之六因又以隅因之得一十三万五千为上亷 初商四之隅因得三百为下亷 次商六十 置一于左次为上法 置一倍初商加次商得六百六十又并初次商相因得三百六十得二十三万七千六百 又加初商自之九万共三十二万七千六百以乘从二亷得二亿九千四百八十四万与上次法六十相乘得一百七十六亿九千○四十万减去负积存一百五十五亿○三百四十万为实 倍初加次共六百六十以乘从一亷得五千九百七十九万六千为益从亷 置一乘上亷得八百一十万置一自之以乘下亷得一百○八万 置一自乘再乘隅因得五万四千为隅法 并方法益亷上下亷隅法共九千六百○三万 并从方共二亿五千八百三十九万为下法与上法相乘除实尽
  右开三乘方内俱带翻法后如此类者仿此
  南门之东不知步数有树乙出南门南行不知步数而立甲出西门南行四百八十步望乙与树俱与城相叅直乙复斜行至树下与甲相望计乙直行斜行共二百八十八步问城径
  释曰此以邉股及明股和立法测望甲出西门南行邉股也乙出南门直行明股斜行至树明也共步明股和也
  术曰股和相减余一百九十二为差 加股复以差乘之折半得六万四千五百一十二差自之得三万六千八百六十四 二数相减余二万七千六百四十八为实 并股和半之得三百八十四为法 实如法而一得明勾七十二以明勾股求圎径
  东门外往南有树乙出东门东行不知步数而立甲出西门南行四百八十步望树与乙俱与城相叅直既而乙斜行至树下与甲相望计乙直斜行共五十步释曰此以邉股及□勾和立法测望甲出西门南行邉股也乙直行□勾斜行□也
  术曰股和相并半之得二百六十五为汛率以泛率减邉股余二百一十五自之得四万六千二百二十五 和步乘泛率得一万三千二百五十半之得六千六百二十五 二数相减余三万九千六百为平实 以泛率减邉股六之得一千二百九十为从方作带从开平方法开之得□股三十
  从开平方法见一卷
  股与较测望四
  甲乙二人俱在城外西北干隅甲南行六百步而立乙东行不知步数见之又斜行与甲相防计乙行直步不及斜三百六十步问城径
  释曰此以通股勾较测望甲南行通股也乙东行不及斜行勾较也
  术曰股自乘较除之得勾利减较半之为勾加较半之为
  邉股以下推此
  与和测望五
  甲乙二人俱在城外西北干隅乙向南行不知步数而立甲向东行亦不知步数望见之遂斜行六百八十步与乙防计甲之东与乙之南共九百二十步问城径
  释曰此以通与勾股和测望甲斜行与乙防也甲之东为勾乙之南为股共步和也
  术曰倍筭与和筭相减余为实平方开之得勾股较减和半之为勾加和半之为股
  邉以下推此
  甲从北门向东直行庚从西门穿城东行丙从西门向南直行壬从北门穿城南行四人遥相望悉与城相叅直只云甲丙相望处斜量六百八十步庚壬穿城共行了六百三十一步问城径
  释曰此通与邉勾底股和立法测望甲丙相望通也庚从西门穿城东行邉勾也壬从北门穿城南行底股也共步和也
  术曰共步自之得三十九万八千一百六十一为和筭共步减相望处步余自之得二千四百○一为差筭 差筭减和筭余三十九万五千七百六十为平实 倍斜步加差四十九共一千四百○九为从作带从开平方法除之得全径
  带从开平方法见一卷
  甲乙二人共立于城外东北艮隅乙南行过城门而立甲东行望乙与城相叅直而止丙丁二人共立于城外西南坤隅丁向东过城门而立丙向南行望丁及甲乙悉与城相叅直丙复斜行六百八十步与甲相防计乙之南与丁之东共三百四十二步问城径释曰此通与大差勾小差股和立法测望乙从艮隅而南过城门而立山之艮小差股也以甲东行为勾丁从坤隅东行过城门而立坤之月大差勾也以丙南行为股丙斜行与甲相会通也乙丁直行共步大差勾与小差股和也
  术曰斜步共步相乘倍之得四十六万五千一百二十为实 斜步共步相减余三百三十八为差 倍斜行加差共一千六百九十八为从 作带从开平法除之得全径
  带从开平方法见前
  甲出东门东行乙出南门南行各不知步数相望与城相叅直甲复斜行二百八十九步与乙相防乙直行长甲直行短共计一百五十一步问城径
  释曰此以皇极□勾明股和立法测望甲东行为□勾乙南行为明股甲之斜行皇极也
  术曰斜行自之得八万三千五百二十一为筭共步自之得二万二千八百○一为和筭 和筭减筭余六万○七百二十为实 倍共步减斜行余一十三步为从 作带从开平方法除之得全径带从开平方法见前
  甲乙二人同出东门甲东行乙南行丙丁二人同出南门丙南行丁东行各不知步数而立四人遥相望悉与城相叅直问其步数则曰甲丙共行了一百五十一步乙丁立处相距一百○二步问城径
  释曰此太虚与□勾明股和立法测望甲出东门直行为□勾而乙南行为股丙出南门南行为明股而丁东行为勾甲丙共步□勾明股和也乙丁相距太虚也
  术曰共步相距步相减余四十九为差 自之得二千四百○一为差筭 共步自之得二万二千八百○一为和筭 差筭减和筭余二万○四百为实倍距步减差余一百五十五为从 作以从减法开平方法除之得全径
  以从减法开平方法见前
  又为以从添积开平方
  其法曰初商二百 置一于左上为法 置一乘从得三万一千为益积 添入原积共五万一千四百为实 置一为隅法与上法相乘除实四万余实一万一千四百 倍隅法得四百为亷法次商四十 置一于左上为法 置一乘从方
  得六千二百为益实 添入余积共一万七千六百为实 置一并亷法共四百四十为下法与上法相乘除实尽
  后凡言以从添积开平方法俱仿此
  岀南门向东有槐树出东门向南有栁树丙丁俱出南门丙直往南丁往东至槐树下立甲乙俱出东门甲直往东乙往南至桞树下立四人遥相望见各不知歩数只云丙丁共行了二百○七步甲乙共行了四十六步其甲丙立处相距二百八十九步问城径释曰此以皇极与明勾股和□勾股和立法测望槐在南门之东为南之月明勾也丁直行往南为日之南明股也共行二百○七明勾股和也栁在东门之南为山之东□股也甲直行往东为东之川□勾也共行四十六步□勾股和也甲丙立处相距为日川皇极也
  术曰二和相减余以减相距余半之得六十四为平勾 以加二和相减为平股 相乘为实平方开之即半径
  又曰二和相并以减相距余半之得一十八为泛率加明和为长加□和为广长广相乘得半径筭
  南门之东有槐东门之南有栁丙出南门直行丁出南门东至槐下甲出东门直行乙出东门南至栁下相望俱与城相叅直计丙南丁东共行二百○七步甲东乙南共行四十六步其二树相距一百○二步问城径
  释曰此与前问同前以逺相距言此以近相距言近相距太虚也以太虚与明叀二和立法测望术曰叀和乘虚又自之得二千二百○一万四千八百六十四为平实 并二和自之得六万四千○○九为二和筭 □和自之得二千一百一十六为□和筭 明和自之得四万二千八百四十九为明和筭 并明和筭叀和筭以减二和筭 余一万九千○四十四为益隅作负隅开平方法除之得叀倍筭与和筭相减开其余得叀勾股较加和半之为股减和半之为勾
  负隅开平方曰置所得平实以益隅约之初商三十 置一于左上为法 置一乘益隅得五十七万一千三百二十为下法与上法相乘除实一千七百一十三万九千六百 余实四百八十七万五千二百六十四 倍下法得一百一十四万二千六百四十为亷法 约次商得四 置一于左上为法 置一乘益隅得七万六千一百七十六并入亷法共一百二十一万八千八百一十六
  为下法与上法相乘除实尽
  此法已见一卷底勾条下因隅算多故重出
  又曰隅算除平实即得叀筭
  又曰明和乘虚又自之得四亿四千五百八十○万○○九百九十六为平实 如前法为负隅平方开之得明 若以益隅除平实径得明筭又术虚自之得一万○四百○四为虚筭 以叀和乘之得四十七万八千五百八十四为平实倍明和得四百一十四为益隅开之得叀 若以益隅除平实径得叀筭
  虚自之以明和乘之得二百一十五万三千六百二十八为平实 倍叀和为益隅开之得明 若以益隅除平实径得明筭
  三位负隅开平方曰置平实四亿四千五百八十○万○九百九十六于左 以益隅一万九千○四十四约之 初商一百置一于左上为法 置一于右下乘益隅得一百九十○万四千四百为下法与上法相乘除实一亿九千○四十四万余实二亿五千五百三十六万○九百九十六倍下法得三百八十○万八千八百为亷法 次商五十 置一于左上为法 置一乘益隅得九十五万二千二百为隅法 并亷法共四百七十六万一千为下法 与上次相乘除实二亿三千八百○五万 余实一千七百三十一万○九百九十六 倍隅法得一百九十○万四千四百并入亷法共五百七十一万三千二百为亷法约三商得三 置一于左为法 置一右下乘益隅得五万七千一百三十二为隅法 并入亷法共五百七十七万○三百三十二为下法与上法相乘除实尽
  与较测望六
  甲丙二人俱在城外西北隅起程丙南行甲东行各不知步数隔城相望既而甲斜行六百八十步与丙相防问其东行步数则曰我少于丙南行二百八十步问城径
  释曰此通与通勾股较立法测望甲东行为勾丙南行为股甲少于丙步数勾股较也斜行也术曰自乘倍之得九十二万四千八百较自乘得七万八千四百相减余八十四万六千四百为实平方开之得勾股和九百二十加较半之为股减较半之为勾
  又曰较相减得四百为较较 相并得九百六十为较和 较较较和相乘得三十八万四千为实 倍较得五百六十为从 二为隅筭 作以从减法负隅开平方法除之得通股 作带从负隅开平方法除之得通勾
  带从负隅开平方法见四卷底勾通条
  带从负隅以从减隅开平方法见四卷大差勾黄长条下
  又为以从添积负隅开平方
  以六百乘从益实倍六百得一千二百为法即是邉以下类推
  乙出东门南行不知步数而立甲出西门直徃南行回望乙与城相叅直又斜行五百一十步与乙相防问乙行步则曰少于城径二百一十步不知城径防何释曰此黄广与叀股黄广勾较立法测望乙出东门南行为叀股城径即黄广勾少于城径即叀股黄广勾较也斜行黄广也
  术曰较自之得四万四千一百为较筭以为实 斜歩四之减二较余一千六百二十为从 五为隅算作负隅减从开平方法除之得叀股三十加较为黄广勾即城径
  负隅减从开平方法见二卷通勾叀勾条
  乙出南门东行不知步数而立甲出北门直徃东行望乙与城相叅直又斜行二百七十二歩与乙相防问乙东行步则曰少于城径一百六十八步不知城径防何
  释曰此黄长与明勾黄长股较立法测望乙出南门东行为明勾城径即黄长股少于城径即明勾黄长股较也斜行黄长也
  术曰较自之得二万八千二百二十四为实四斜行减二较余七百五十二为从方五为隅算作负隅减从开平方法除之得明勾七十二加较为黄长股即城径
  负隅减从开平方法见二卷










  测圆海镜分类释术卷六
  钦定四库全书
  测圆海镜分类释术卷七
  元 李 冶 撰
  明 顾应祥 释术
  通勾股和与别勾股测望一
  丙从城西门穿城东行二百五十六步而立丁从城北门穿城南行三百七十五步而立甲乙二人俱在城外西北干隅甲向东乙向南各不知步数而立四人遥相望俱与城相叅直只云甲东乙南共步九百二十问城径
  释曰此以通勾股和与邉勾底股立法测望甲东行为勾乙南行为股共步为通勾股和丙穿城东行邉勾丁穿城南行底股也
  术曰丙东行自之得六万五千五百三十六为邉勾筭 丁南行自之得一十四万○六百二十五为底股筭 相并得二十○万六千一百六十一为二筭和 倍邉勾底股和与通勾股和相减余三百四十二又减于邉勾底股和余二百八十九自之得八万三千五百二十一 以减二筭和余一十二万二千六百四十为平实 以邉勾底股和六百三十一为从 半步为隅算作负隅减从开平方法除之得全径
  负隅减从开平方法见二卷通勾□勾条
  丙出东门不知步数而立丁出南门不知步数而立甲乙二人俱在城外西北干隅甲东行乙南行各立定四人遥相望俱与城相叅直既而丁从立处向东北斜行四百二十五步与甲防丙从立处向西南斜行五百四十四步与乙防问甲乙行步则曰共行九百二十问城径
  释曰此通勾股和与邉底立法测望甲东行为通勾乙南行为通股共行九百二十通勾股和也丙从丁处斜行就甲底也丁从立处斜行就乙邉也
  术曰二相减余自之得一万四千一百六十一为实 二相并减共行步余四十九为法实如法而一得二百八十九减法为全径
  丙出南门东行稍逺丁出东门南行稍近甲乙二人俱在城外西北干隅甲东行乙南行各不知步数而立相望俱与城相叅直既而丙从立处向东北斜行二百七十二步与甲会丁从立处向东南斜行五百一十步与乙会问甲乙行步则曰共行九百二十步不知城径防何