测圆海镜分类释术

  圆城南门外有槐树一株东门外有栁树一株两树斜相距二百八十九步甲从城外西北隅向东行三百二十步望槐栁与城相叅直问城径
  释曰此以通勾皇极立法测望甲东行通勾也两树斜相距皇极也原法先求出皇极勾即栁至城心步后以勾求股以皇极勾股求容圆即是术曰通勾与皇极相乘得九万二千四百八十自之得八十五亿五千二百五十五万○四百为三乘方实 皇极自乗得八万三千五百二十一为皇极筭以通勾乘之得二千六百七十二万六千七百二十倍之得五千三百四十五万三千四百四十为从方 倍通勾皇极相乘之数得一十八万四千九百六十为第一从廉 倍皇极得五百七十八为第二益廉 以二为隅筭作带从廉负隅以廉隅添积开三乘方法除之得一百三十六为皇极勾求城径以皇极勾求皇极股二百五十五 勾股相乘倍为实以除之即得容圆全径【勾求股见一卷】带从廉负隅以廉隅添积开三乘方曰置所得三乘方积为实 列从方从一廉从二益廉约商首一位得一百置一于左上为法 置一自之以乘益廉得五百七十八万 置一自乘再乘以隅筭因之得二百万为隅法益廉共七百七十八万与上法相乘得七亿七千八百万为益实添入积内共九十三亿三千○五十五万○四百为通实置一乘从一廉得一千八百四十九万六千为益从并入从方共七千一百九十四万九千四百四十为下法与上法相乘除实七十一亿九千四百九十四万四千余实二十一亿三千五百六十○万六千四百为次商之实 四因隅法得八百万为方法 初商自之六因又以隅筭因之得一十二万为上廉 初商四之隅因得八百为下廉次商三十置一于左次为上法 倍初商加次商得二百三十并初次商为一百三十相乘得二万九千九百又加初商自之一万共三万九千九百以乘从二益廉得二千三百○六万二千二百为益廉之实 置一乘上廉得三百六十万 置一自之得九百以乘下廉得七十二万 置一自乘再乘得二万七千隅因得五万四千为隅法并方廉隅共一千二百三十七万四千为益隅之实与益廉之实相并得三千五百四十三万六千二百为益积之法与上次法相乘得一十○亿六千三百○八万六千为益积之实添入余实共三十一亿九千八百六十九万二千四百为通实 倍初商加次商得二百三十 以乘从一廉得四千二百五十四万○八百为益从并入从方共九千五百九十九万四千二百四十为下法 与上次法相乘除实二十八亿七千九百八十二万七千二百尚余三亿一千八百八十六万五千二百为三商之实 二因上廉得七百二十万 三因下廉得二百一十六万 四因隅法得二十一万六千并入方法共一千七百五十七万六千为方法 并初次商自之 又六因得一十○万一千四百以隅筭因之得二十○万二千八百为上廉 并初次商四之得五百二十以隅因得一千○四十为下廉 三商得六 置一于左上为法 倍初次商加三商得二百六十六 并初次商加三商得一百三十六 相乘得三万六千一百七十六又以初次商并自之得一万六千九百加之共五万三千○七十六以乘从二益廉得三千○六十七万七千九百二十八为益廉之实 置一乘上廉得一百二十一万六千八百 置一自之以乘下廉得三万七千四百四十相并得一百二十五万四千二百四十为廉法 置一自乘再乘得二百一十六 以隅因之得四百三十二为隅法并方法廉法隅法共一千八百八十三万○六百七十二为益隅之实 并益廉之实共四千九百五十○万八千六百为益积之法 与上法相乘得二亿九千七百○五万一千六百为益积 添入余实共六亿一千五百九十一万六千八百为通实 倍初次商加三商得二百六十六 以乘从一廉四千九百一十九万九千三百六十为益从 并从方共一亿○二百六十五万二千八百为下法与上法六相乘除实尽得一百三十六为皇极勾此法以二廉与隅添积以第一廉益从为法
  又为带从负隅以廉隅减从开三乘方法
  其法曰以八十五亿五千二百五十五万○四百为正实 以五千三百四十五万三千四百四十为从方 以一十八万四千九百六十为从一廉以五百七十八为从二减廉 二为隅算 约
  初商得一百 置一于左上为法 置一自之得一万以乘从二廉得五百七十八万为减廉置一自乘再乘 又以隅因得二百万为隅法 并减廉隅法得七百七十八万为减从 置一乘从一廉得一千八百四十九万六千为益从 以益从加入原从得七千一百九十四万九千四百四十以减从减之余六千四百一十六万九千四百
  四十为下法 与上法相乘除实六十四亿一千六百九十四万四千 余实二十一亿三千五百六十○万六千四百为次商之实 四因隅法得八百万为方法 初商自之六因又以隅因之得一十二万为上廉 初商四之隅因得八百为下廉 约次商得三十置一于左上为法 倍初商加次商得二百三十 并初次商得一百三十相因得二万九千九百又加初商自乘一万共三万九千九百以乘从二廉得二千三百○六万二千二百为减廉 置一乘上廉得三百六十万 置一自之以乘下廉得七十二万 置一自乘再乘隅因得五万四千为隅法 并方廉隅共一千二百三十七万四千为减隅 并减廉减隅共三千五百四十三万六千二百为减从 倍初加次商得二百三十以乘从一廉得四千二百五十四万○八百为益从以加原从得九千五百九十九万四千二百四十以减从减之余六千○五十五万八千○四十为下法 与上法相乘除实一十八亿一千六百七十四万一千二百 余实三亿一千八百八十六万五千二百为三商之实 二因上廉得七百二十万三因下廉得二百一十六万四因隅法得二十一万六千并入方法共一千
  七百五十七万六千为方法 初次商并自之六因又以隅筭因之得二十○万二千八百为上廉 初次商并四之隅因得一千○四十为下廉约三商得六置一于左次为上法 倍初次商
  加三商得二百六十六 并初次三商共一百三十六相因得三万六千一百七十六又加初次商相并自之一万六千九百共五万三千○七十六以乘从二廉得三千○六十七万七千九百二十八为减廉 置一乘上廉得一百二十一万六千八百 置一自之以乘下廉得三万七千四百四十置一自乘再乘以隅因得四百三十二为隅法并方廉隅共一千八百八十三万○六百七十
  二为减隅 减廉减隅相和得四千九百五十○万八千六百为减从倍初次加三商得二百六十六以乘从一廉得四千九百一十九万九千三百六十为益从 以加原从得一亿○二百六十五万二千八百 以减从减之余五千三百一十四万四千二百为下法 与上法相乘除实尽此法以第一廉为益从第二廉与隅为减从以从为法
  后凡如此类者俱仿此
  圆城南门外往东有树甲从城外西北隅东行三百二十步望树与城叅直复斜行二百七十二步至树下问城径
  释曰此以通勾黄长立法测望南门外往东七十二步有树明勾也甲东行通勾也斜行至树下地之月黄长也
  术曰二行相减余四十八为差 倍差倍东行相乘得六万一千四百四十为实 倍差倍东行步相并得七百三十六为益从 二为隅法 作负隅减从翻法开平方法除之得全径
  负隅减从翻法开平方法见三卷通勾□股条下前以半径此以全径推广即是
  丙出南门东行乙出东门南行各不知步数而立甲从城外西北干隅东行三百二十步望乙丙俱与城相叅直既而乙欲就丙乃斜行一百○二步相防问城径
  释曰此以通勾太虚立法测望丙出南门东行七十二为明勾乙出东门南行三十步为□股甲东行通勾也乙斜行太虚也以此勾立法
  术曰甲东行自之得一十○万二千四百为东行筭倍斜行乘之得二千○八十八万九千六百为立
  方实 倍斜行乘东行得数又加倍东行筭得二十七万○○八十为从方四之东行得一千二百八十为益廉 四为隅法 作带从负隅以廉添积开立方法除之得半径
  带从负隅以廉添积开立方曰置所得立方实于左 以从方益廉隅筭约之 初商一百 置一于左上为法 置一乘益廉得一十二万八千与上法相乘得一千二百八十万为益实 添入积内得三千三百六十八万九千六百为通实 置一自之又以隅筭因之得四万为隅法 并从方共三十一万○○八十为下法与上法相乘除实三千一百○○万八千余实二百六十八万一千六百为次实 二因乘过益廉得二十五万六千为益廉 三因隅法得一十二万为方法 三因初商得三百为廉法 次商二十 置一于左上为法 置一乘原益廉得二万五千六百并入乘过益廉得二十八万一千六百与上法相乘得五百六十三万二千为益实 添入次实共八百三十一万三千六百为通实 置一乘廉法得六千隅因得二万四千 置一自之隅因得一千六百为隅法 并方廉隅共一十四万五千六百带从方共四十一万五千六百八十为下法与上法相乘除实尽
  后凡言带从负隅以廉添积开立方法俱仿此
  又为带从廉半翻法减从负隅开立方法
  法曰初商一百 置一于左上为法 置一乘从廉得一十二万八千以减从方余一十四万二千○八十 置一自之隅因得四万为隅法并减余从方共一十八万二千○八十为下法与上法相乘除实一千八百二十○万八千余实二百六十八万一千六百为次商之实 二因从廉得二十五万六千 三因隅法得一十二万为方法 三因初商得三百为廉法 约次商得二十 置一于左次为上法 置一乘从廉得二万五千六百并入前二因从廉得二十八万一千六百 以减从方不及反减从方二十七万○○八十余一万一千五百二十为负从 置一乘廉法以隅因得二万四千 置一自之隅因得一千六百为隅法并方廉隅共一十四万五千六百反减负从余一十三万四千○八十为下法与上法相乘除实尽后凡如此类者俱仿此
  又术曰斜行乘东行筭半之得五百二十二万二千四百为实 斜行乘东行如东行筭半之得六万七千五百二十为从方 东行三百二十为从廉如前法求之得半径
  不用隅算 添积减从随意
  又曰四之斜行以乘东行筭得四千一百七十七万九千二百为正实 倍斜行乘东行加二之东行筭得二十七万○○八十为从方 倍东行得六百四十为从廉 如前法开之得全径二百四十 添积减从俱同
  乙出城东门上南不知步数而立甲从城外西北干隅东行三百二十步望乙与城相叅直复斜行一百七十步与乙相防问城径
  释曰此以通勾小差立法测望甲东行通勾也斜行小差也
  术曰二行相减余一百五十为差自之得二万二千五百以乘东行得七百二十万为实 倍差以乘东行得九万六千为从方 倍差得三百为隅算 作负隅减从开平方法除之得半径
  负隅减从开平方法见二卷【通勾□勾条】
  又术倍东行筭得二十三万四千八百 倍二行相乘数得一十○万八千八百 相减余九万六千为实 倍东行得六百四十为从作减从开平方法除之得全径二百四十
  减从开平方法曰列实于左从于右 约初商得二百置一于左上为法 置一为隅法以减从方余四百四十为下法与上法相乘除实八万八千余八千为次商之实余从内再减二百余二百四十为从 次商四十 置一于左上为法 置一为隅法以减从方余二百为下法与上法相乘除实尽
  法见二卷底勾□勾条下因从有重位故重出
  圆城南门外直南不知步数有槐树一株南门外东行不知步数有栁树一株槐栁斜相距一百五十三步甲从城外西北隅东行三百二十步望槐栁与城相叅直问城径
  释曰此以通勾明立法测望二树斜相距明也甲东行通勾也
  术曰通勾自之得一十○万二千四百为通勾筭二行相乘得四万八千九百六十 又以二数相乘得五十○亿一千三百五十○万四千为三乘方实明乘通勾筭三之得四千七百○○万一千六百为从方 倍二行相乘数以减通勾筭余四千四百八十为第一廉 倍通勾得六百四十为第二益廉二步为隅法 作带从负隅以二廉减从方开三乘方法除之得半径
  带上廉负隅以下廉减从开三乘方法曰置所得三乘方实以防隅从方约之初商一百 置一于左上为法 置一自之以乘从二廉得六百四十万为减廉以减从方 余四千○六十○万一千六百为从方 置一乘第一廉得四十四万八千为益廉 置一自乘再乘得一百万又以隅因之得二百万为隅法 并从方益廉隅法共四千三百○四万九千六百为下法与上法相乘除实四十三亿○四百九十六万 余实七亿○八百五十四万四千为次商之实 四因隅法得八百万为方法 初商自之六因又以隅法因之得一十二万为上廉 初商四之隅因得八百为下廉 约次商得二十 置一于左上为法 倍初商加次商得二百二十以乘从二廉得一十四万○八百并初次商得一百二十因之得一千六百八十九万六千为减廉 以减余从余二千三百七十○万五千六百为从方 倍初商加次商得二百二十以乘第一廉得九十八万五千六百为益廉置一乘上廉得二百四十万 置一自之以乘下廉得三十二万 置一自乘再乘又以隅因之得一万六千为隅法 并方法从方廉益上下廉隅法共三千五百四十二万七千二百为下法与上法相乘除实尽
  丙出东门南行乙出东门直行各不知步数而立甲从城外西北干隅东行三百二十步回望乙丙与城相叅直既而乙欲就丙乃斜行三十四步相防问城径释曰此以通勾□立法测望甲东行通勾也乙斜行三十四步就丙□也
  术曰通勾自之得一十○万二千四百为通勾筭又以通勾増乘得三千二百七十六万八千 倍□乘通勾筭得六百九十六万三千二百 二数相减余二千五百八十○万四千八百为立方实 □乘通勾得一万○八百八十以减二之通勾筭得一十九万三千九百二十为从方 通勾加五得四百八十为益廉 五分为隅法 作带从负隅以廉添积开立方法除之得全径