- 首页
- 子藏
- 算法
- 御制历象考成后编
御制历象考成后编
设日天最高在庚月天最高相距三百一十五度日在最卑辛距月天最卑四十五度月在庚望距本天最高四十五度此时太阴初均应减四度二十分二十四秒然测太阴实行却比平行少四度二十六分三秒比所推实行少五分三十九秒若日天最高在辛月天最高相距一百三十五度日在最卑庚距月天最高四十五度月在辛望距本天最高二百二十五度此时太阴初均应加四度四十七分四十二秒然测太隂实行仅比平行多四度四十五分二十九秒比所推实行少二分一十三秒又设日天最高在壬月天最高相距二百二十五度日在最卑癸距月天最高三百一十五度而在中距后四十五度月在壬望距本天最高一百三十五度此时太阴初均应减四度四十七分四十二秒然测太阴实行仅比平行少四度四十五分二十九秒比所推实行多二分一十三秒若日天最高在癸月天最高相距四十五度日在最卑壬距月天最高一百三十五度而在中距后四十五度月在癸望距本天最高三百一十五度此时太阴初均应加四度二十分二十四秒然测太隂实行却比平行多四度二十六分三秒比所推实行多五分三十九秒两测太阳同在最卑前测太阳一在月天最卑后四十五度一在月天最高后四十五度实行皆比平行为少后测太阳在月天中距后四十五度实行皆比平行为多是知日在月天高卑后则减中距后则加为二平均之故矣然前测日天最高在庚月天最高相距三百一十五度则少数大日天最高在辛月天最高相距一百三十五度则少数小后测日天最高在壬月天最高相距二百二十五度则多数小日天最高在癸月天最高相距四十五度则多数大是必另有一均因月天最高距日天最高半周内而加半周外而减者于是以大小两数相减折半得一分四十三秒别为三均以减大数加小数得三分五十六秒为太阳在最卑时距月天高卑中距后四十五度之最大二平均高卑后为减中距后为加也
设日天最高在丙与月天最高同度日在庚距月天最高四十五度距日天最高亦四十五度此时一平均应加八分一十五秒月在辛望距本天最高二百二十五度初均应加四度四十七分四十二秒实行应比平行多四度五十五分五十七秒然测太阴实行仅比平行多四度五十二分二十秒比所推实行少三分三十七秒是为日在最高后四十五度时距月天最高后四十五度应减之二平均也又设日在壬距月天最高一百三十五度而在中距后四十五度距日天最高亦一百三十五度此时一平均应加八分三十秒月在癸望距本天最高三百一十五度初均应加四度二十分二十四秒实行应比平行多四度二十八分五十四秒然测太阴实行却比平行多四度三十二分四十七秒比所推实行多三分五十三秒是为日在最高后一百三十五度时距月天中距后四十五度应加之二平均也又设日在子距月天最高二十度距日天最高亦二十度此时一平均应加三分五十八秒月在丑望距本天最高二百度初均应加二度四十四分二秒实行比平行应多二度四十八分然测太隂实行仅比平行多二度四十五分四十二秒比所推实行少二分一十八秒是为日在最高后二十度时距月天最高二十度应减之二平均也又设日在寅距月天最高一百一十度而在中距后二十度距日天最高亦一百一十度此时一平均应加一十一分一十二秒月在卯望距本天最高后二百九十度初均应加四度五十五分一十六秒实行比平行应多五度六分二十八秒然测太阴实行却比平行多五度八分五十六秒比所推实行多二分二十八秒是为日在最高后一百一十度时距月天最高一百一十度应加之二平均也以上测得诸数与本天面积比例相似如甲乙丙丁为最大两心差之撱圆其面积小甲戊丙己为最小两心差之撱圆其面积大甲庚丙辛为相加折半之撱圆其面积适中今以适中之面积均分之为平行在小面积必比中积为少故平行迟在大面积必比中积为多故平行速然其迟速之限止在日距月最高倍度九十度之间故其迟速之差亦至九十度而止试以最大两心差之甲乙壬撱圆九十度积七八三六四四八三二一一一四二与最小两心差之甲戊壬撱圆九十度积七八四六六○九○二五九四六七相减余一○一六○七○四八三二五为甲乙戊积折半得五○八○三五二四一六二为甲乙庚积与甲庚戊积等以适中一秒积二四二○二二四九○除之得二百一十秒収为三分三十秒比日在最高之最大二平均仅少四秒今仍用旧数
又日在最高距地逺而差数小日在最卑距地近而差数大与转比例相似试以日在最卑距地九八三一之平方九六六四为一率日在最高距地一○一六九之平方一○三四○为二率【面积从末截去十位以便入算】日在最高距地数乗最高二平均三分三十四秒之长方为三率求得四率为日在最卑距地数乗最卑二平均之长方以最卑距地数除之得三分五十六秒强为日在最卑之二平均又法先以四率最卑距地数与一率最卑平方相乗得最卑距地之立方九五○一五二为一率以三率最高距地数与二率最高平方相乗得最高距地之立方一○五一五六二为二率【立方积从末截去十五位以便入算】即以日在最高二平均三分三十四秒为三率则得四率即为日在最卑二平均三分五十六秒与表合日距月最高逐度之二平均以半径与日距月最高倍度之正为比例如甲为地心甲乙为中数两心差甲丙为最大两心差甲丁为最小两心差日在月天最高月本天心在丙面积最小平行最迟自丙向戊所迟渐少迨日距月天最高四十五度则月本天心自丙行九十度至戊面积适中无所迟而复于平行然积迟之多正在戊故为最大之减差由戊向丁面积渐大平行渐速然因有积迟之度方以次相补迨日距月天最高九十度则月本天心自丙行一百八十度至丁平行最速而积迟之度方补足无缺故自丙至丁半周皆为减差也日在月天中距月本天心在丁面积最大平行最速自丁向己所速渐少迨日距月天最高一百三十五度则月本天心自丙行二百七十度至己面积适中即无所速而复于平行然积速之多正在己故为最大之加差由己向丙面积渐小平行渐迟然因有积速之度方以次相消迨日距月天最高后半周与月天最卑同度则月本天心自丙行一周复至丙平行最迟而积速之度始消尽无余故自丁至丙半周皆为加差也日距月天最卑后皆仿此今以日距月最高倍度之正为比例自丙向戊自丁向己正渐大而其较渐小自戊向丁自己向丙正渐小而其较渐大故自戊防而后所减渐少而所少之较又渐大实即加也加至丁防而极自丁防而后为加虽所加渐多而所加之较实渐小至己则逐日所加相等是即无所加矣自己防而后所加渐少而所少之较又渐大实即减也减至丙防而极自丙防而后为减虽所减渐多而所减之较实渐小至戊则逐日所减相等是即无所减矣故太阴平行以丙防前后为迟丁防前后为速而迟速之差至戊己二防而止其间逐度之二平均皆以日距月最高倍度之正为比例也太阳距地逐度二平均较以太阳高卑距地之立方较与本日太阳距地之立方较为比例盖以本日太阳距地之立方与最高距地之立方为比同于最高之二平均与本日太阳距地之二平均为比此正理也【法见前】然以此立表则不胜其繁而逐度太阳距地之立方推算亦不易且其至大之差不过二十二秒用立方较为比例其数巳自相合故先以日在最高之最大二平均三分三十四秒比例得日在最高时本日之二平均又以日在最卑之最大二平均三分五十六秒比例得日在最卑时本日之二平均两二平均相减为高卑二平均之较乃以日在最高距地一○一六九之立方一○五一五六二与日在最卑距地九八三一之立方九五○一五二相减余一○一四一○为高卑立方大较为一率高卑二平均之较为二率本日太阳距地之立方与最高距地之立方相减为本日之立方较为三率求得四率为本日二平均较与日在最高之二平均相加即得本日之二平均也
求三平均
前篇言日天最高与月天最高同度或相距一百八十度日月又同在最高卑则实行与平行合为一线无诸均数然惟太阳在两交与大距为然若太阳在两交后则平行又稍迟在大距后则平行又稍速其最大差为四十七秒名曰三平均盖白极在正交均轮周新法算书谓行月距日之倍度奈端以来谓行日距正交之倍度【详见后交均篇】故惟太阳在两交与大距则白极与均轮心参直其平行无加减太阳在两交后则白极在均轮心之东而白道经圏之过黄道者亦差而东其黄道旧防所当白道度即差而西故平行应减而迟也太阳在大距后则白极在均轮心之西而白道经圏之过黄道者亦差而西其黄道旧防所当白道度即差而东故平行应加而速也此其所差止在数十秒之间虽不易得之仰观而实可稽诸仪象其法以半径一千万与均轮半径切线为比同于本轮半径与最大三平均切线为比而逐度之三平均皆以半径与日距正交倍度之正即为比例焉
如图甲为黄极乙丙丁戊为
黄道以最大黄白大距五度
一十七分二十秒与最小黄
白大距四度五十九分三十
五秒相加折半得五度八分
二十七秒半为黄白大距之
中数以中数为半径作己庚
辛壬圏为白极绕黄极本轮
又以两大距相减折半得八
分五十二秒半为半径作癸
子丑寅圏为负白极均轮均
轮心循本轮周左旋自己向
庚每日三分有余为正交行
度白极循均轮周右旋自癸
向子每日二度四分有余为
日距正交之倍度日在两交
白极在癸
日在大距白极在丑与均轮
心参直成一直线故无三平
均如日距两交后四十五度
则白道之北极自癸行九十
度至子在均轮心之东而白
道之南极转在均轮心之
西白道经圏交白道于卯当
黄道之辰在乙防黄道度之
东而白道经圏之过乙防者
即当白道之己是白道度退
矣白道度退则太隂亦随之
而退故白极在癸子丑半周
三平均皆为减差也如日在
大距后四十五度则白道之
北极自丑行九十度至寅在
均轮心之西而白道之南极
即转在均
轮心之东白道经圏交白
道于卯当黄道之午在乙
防黄道度之西而白道经
圏之过乙防者即当白道
之未是白道度进矣白道
度进则太阴亦随之而进
故白极在丑寅癸半周三
平均皆为加差也巳卯子
卯寅卯皆九十度巳角子
角寅角皆直角巳子巳寅
皆均轮半径八分五十二
秒半即卯角度乙卯五度
八分二十七秒半与甲己
本轮半径等故以半径一
千万与卯角正切线二五
八一六为比同于乙卯弧
之正八九六○六六与
乙午或乙辰之正切线二
三一三为比而得乙午乙
辰弧各四十七秒为最大
三平均若日距正交之倍
度不及九十度或过九十
度则巳角或鋭或钝不得
成直角而卯角与乙辰乙
午三平均皆以渐而小当
用弧线三角形法推算然
均轮半径不过八分余其
逐度之正即与卯角等
故逐度之三平均即以半
径与日距正交倍度之正
为比例也今按三平均
系白道度当用卯巳与卯
未弧又按推交均法将均
轮半径减五十秒余巳申
八分二秒半为小轮半径
则三平均又当用卯酉弧
然以数推之卯巳弧为四十
八秒卯酉弧为四十三秒其
差不逺故即以均轮半径比
例为省算云
求二均数
新法算书惟太阴两行度止有初均二均两前后始有三均初均之最大者四度五十八分余二均之最大者二度二十七分余三均之最大者四十二分余计两前后最大差共八度弱噶西尼以来屡加测验谓两太阴行度止有初均三均而三均又不尽关乎两之故二均之最大者不在两而在朔望之间其初均之最大者七度三十九分三十四秒二均之最大者三十七分一十一秒计两前后最大差共八度强则是今之二均固兼新法算书二均三均之义而其数则又不同盖太阴去地甚近其行最着又二十七日有竒而一周天一月之中备日行四时之轨至为参错不齐古人惟重交食故朔望而外置之弗论西人第谷始创二三均之法其门人精测不已又数十年然后改定则其数必实有所据而非为臆説也其法定日在最高朔望前后四十五度最大差为三十三分一十四秒日在最卑朔望前后四十五度最大差为三十七分一十一秒朔望后为加两后为减其间月距日逐度之二均则以半径与月距日倍度之正为比例其太阳距最高逐度二均之差又以日天高卑距地之立方较与本日太阳距地之立方较为比例与二平均同测算之法并设于后
如甲为地心乙为日本天心丙丁戊己为日本天丙为最高戊为最卑丁己为中距设月天最高在日天最高丙太阳在最高丙太阴在庚距最高四十五度距日亦四十五度为朔与上之间此时太阴初均应减五度六分一十一秒然测太阴实行则仅比平行少四度三十一分一十四秒比所推实行多三十四分五十七秒若太隂在辛距最高二百二十五度距日亦二百二十五度而在望后四十五度为望与下之间此时太隂初均应加五度四十四分二十九秒然测太隂实行却比平行多六度一十六分比所推实行多三十一分三十一秒又设太隂在壬距最高三百一十五度距日亦三百一十五度而在朔前四十五度为下与朔之间此时太隂初均应加五度六分一十一秒然测太阴实行则仅比平行多四度三十一分一十四秒比所推实行少三十四分五十七秒若太阴在癸距最高一百三十五度距日亦一百三十五度而在望前四十五度为上与望之间此时太隂初均应减五度四十四分二十九秒然测太隂实行却比平行少六度一十六分比所推实行少三十一分三十一秒两测太阳同在最高前测太隂在朔望后四十五度实行皆比所推为多后测太阴在朔望前四十五度实行皆比所推为少是知太阴在朔望后则加在朔望前则减为二均之故矣然朔后则多数大望后则多数小朔前则少数大望前则少数小是必另有一均因朔后而加望后而减者于是以大小两数相减折半得一分四十三秒别为三均以减大数加小数得三十三分一十四秒为太阳在最高时月在朔望前后四十五度之最大二均数朔望后为加两后为减也