大统历志

  按阴食限八度者阴厯距交八度内有食也阳食限六度者阳厯距交六度内有食也凡合朔若正当交度其食十分渐离其处食亦渐少假如阳厯距交一度二十分则于食十分内减二分只食八分也又如阴厯距交二度四十分则于食十分内减三分只食七分也故合置阴阳食限以距交前后度减之即是于食十分内减去若干分秒也其减不尽者则正是今所推合食之数故各以定法除之而得也凡阴阳定法皆十分其食限之一也如食限不及减为不食者是距交前后之度多于阴阳食限其去交甚逺不能相掩断为不食也
  推日食定用分法
  置日食分二十分内减去推得日食分秒余【十分定三单分定二】为实即以日食分秒【单分定二】为法乗之【言十定一所定有六子为百分五子为十分】即为所推开方积也立天元一于单微之下依平方法开之得为开方数【有十定一】复以五千七百四十分【定五】为法乗开方数【言十定一】得数又以所推定限行度【去四子空度去三子】为法除之【不满法去一子所定有二子为百分一子为十分】即为所推定用分也
  按定用分者日食亏初复末中距食甚所定用之时刻也凡日食若干分则其所经厯凡有若干刻食分深者厯时久以月所行之白道长也食分浅者厯时暂以月所行之白道短也今所求开方之数即自亏至甚或自甚至复月行白道之率也
  月食只十分今用二十分者何也日月各径十分其半径五分凡两圆相切则两半径聨为一直线正得十分为两心之距以此两心之距为半径从太阳心为心运规作大圆其外周各距日之边五分为日月相切时太阴心所到之界其大圆全径正得二十分也
  以日食分秒相减相乗何也此句股术中较求股法也依前所论初亏时两圆相切其两心之距十分此大圆之半径常为勾股之食甚时两心之距如勾而太阴心侵入大圆边之数如勾较自亏至甚太阴心所行白道如股而太阴心侵入大圆边之数与食分正同葢月边掩日一分则月心亦移进一分也故即以日食分秒为勾较与大圆全径二十分相减其余即为勾和和较相乗为开方积即股实也其开方数即股亦即自亏至甚月心所行之白道矣其自食甚至复光理同
  五千七百四十分乗者何也先求日食分秒及勾股开方等率皆就日体分为十分其实日体不满一度大约为十之七耳五千七百四十者七因八百二十也月行一限得八百二十分其十之七则五百七十四分矣故以五百七十四分乗开方数为实以定限行度除之为定用分之时刻也
  一率 定限行度【为本限月行迟疾之定率】
  二率 五百七十四分【为十分八百二十而用其七】
  三率 开方数【即自亏至甚或自甚至复月所行白道】
  四率 定用分【即自亏至甚甚至复月行所厯之时刻】
  初亏时两心之距为即大圆二十分平径 食甚时两心之距为勾 食甚时月心侵入圆界三分为句较自亏至甚月心所行白道为股甚至复亦仝此以月在阳厯日食三分为例余可仿推
  【五千宜定三子防定五子者因此所谓分
  乃度下二位分故加定二子也立大元一
  子单防之下者如一子于实之微下一位
  也所以然者前所推数皆止于秒秒以下
  所弃者尚多故此于开积加之以凑平方
  整齐也月食仿此】


  推初亏复圆分法
  置所推食甚定分内减去定用分为初亏分不及减加日周【一万】减之复置食甚定分加入定用分为复圆分满日周去之时刻依合朔法推之
  按食甚者食之甚食之中也日月正相当于一度也初亏者亏之初食之始也月始进而掩日也复圆者复于圎食之终也月已掩日而退毕也凡言分者皆时刻也葢初亏在食甚前防刻故减小余复圆在食甚后防刻故加小余初亏距食甚时刻正与食甚距复圆数等故皆以定用分加减之也月食仿此又按据加日周减满日周去二语定用分当不止此数也
  推日食起复方位法
  视所推日食入阴阳厯如是阳厯者初起西南甚于正南复圆于东南也如是阴厯者初起西北甚于正北复圆于东北也若食在八分已上者无论阴阳厯皆初起正西复圎于正东也
  按日食起复方位主日体言之即人所见日之上下左右也以午位言则左为东右为西上为北下为南也日食入阴阳厯者主月道言之月在日道南为阳厯月在日道北为阴厯也如是阳厯食是月在日南掩而过故食起西南甚于正南复于东南也如是阴厯食是月在日北掩而过故食起西北甚于正北复于东北也其食在八分已上者是月与日相当一度正相掩而过故食起正西复于正东其食甚时正相掩覆而无南北不言可知也凡日月行天并自西而东日速月迟其有食也皆日先在东月自西追而及之既相及矣则又行而过于日出于日东故日食亏初皆在西复末皆在东也○又按厯经云此所定起复方位皆自午地言之其余处则更当临时消息也推带食分法
  视朔下盈缩厯与太阳立成同日之日出入分如在初亏分已上食甚分【按食甚当作复圆】已下为带食之分也若是食在晨刻者置日出分昏刻者置日入分皆与食甚分相减余为带食差也置带食差【百定六十定五】以所推日食分秒【十定五单定四】为法乗之【言十定一】得数以所推定用分【百去六子】为法除之【不满法去一子所定有五子为十分四子为单分三子为十秒】得数去减所推日食分秒余上下四处皆为带食也已见未见之分也按带食分者日出入时所见食分进退之数也假如日出分在初亏分已上是初亏在日未出前但见食甚不见亏初也日入分在初亏分已上是食甚在日入后但见亏初不见食甚也又如日出分在复圎分已下是食甚在日未出前不见食甚但见复末也日入分在复圆分已下是复圆在日入后不见复末但见食甚也见食甚不见亏初是食在未出已有若干尚有见食若干带之而出甚食为进也见初亏不见食甚是食在未入见有若干尚有不见食若干带之而入其食亦为进也不见食甚但见复末是食在未出前已复若干尚有见复光若干带之而出其食为退也不见复末但见食甚是食在未入前见复若干尚有未复光若干带之而入其食亦为退也凡此日出入所带进退分秒何以知之则视其带食而出为晨刻者置日出分其带食而入为昏刻者置日入分皆以食甚分与之相减而得带食之差也假如日出分在初亏分以上其食甚分又在日出分已上则以日出分减其食甚分其减不尽者则是日出已后距食甚之时刻也若日入分在初亏分已上其食甚分又在日入分已上则以日入分减其食甚分其减不尽者则是日入已后距食甚之时刻也又如日出分在复圆分已下其食甚分又在日出分已下则于日出分内减去食甚分其减不尽者则是日出以前距食甚之时刻也若日入分在复圆分已下其食甚分又在日入分已下则于日入分内减去食甚分其减不尽者则是日入已前距食甚之时刻也凡此带食差分用乗日食分秒又以定用分除之便知日出入时所距食甚时刻在定用分全数内占得防许即知日出入时所带食分于日食分秒全数内占得防许也以得数减食分所余分秒即是日出入前距亏初已过食分或日出入后距复末未见食分也上下两处者得数与减余两处之数也见未见之分即已复未复已食未食如后二条所列也
  推日有食例
  置日出入分内减去食甚分谓之已复光未复光将所推带食分録于前
  晨【日未出已复光若干日已出见复光若干】 昏【日未入见复光若干日已入未复光若干】
  置食甚分内减去日出入分谓之见食不见食将所推带食分録于后
  晨【日未出已食若干日已出见食若干】  昏【日未入见食若干日已入不见食若干】按置日出入分内减去食甚分者其日出入分皆在复圆分已下也故谓之已复光未复光假如日食甚五分在日出入前其带食三分以之相减尚余二分若在晨刻是日未出前已复光三分日已出后见复光二分也若在昏刻是日未入前见复光三分日已入后未复光二分也此二端带食分皆是已复光数故録于前也其以带食分减之而余者则是未复光数故録于食之后也置食甚分内减去日出入分者其日出入分皆在初亏分已上也故谓之见食不见食假如日食甚五分在日出入后其食三分以之相减尚余二分若在晨刻是日未出前已食二分日已出后见食三分也若在昏刻是日未入前见食二分日已食后不见食三分也此二端带食分皆是未食数故録于后也其以带食分减之而余者则是已食数故録于食之前也月食仿此但以日之昏为月之晨以日之晨为月之昏葢日出于晨入于昏月出于昏入于晨也其余皆同
  推黄道定积度法
  置所推食甚入盈缩厯行定度如是盈厯者内加入天正黄道箕宿度共得为黄道定积度也如是缩厯者内加入半嵗周及天正箕宿黄道度共得为黄道定积度也
  按黄道定积度者逆计食甚日躔度距天正冬至日躔宿度积数也盈厯加入天正黄道箕度者是逆从天正冬至所躔宿初度积筭起也缩厯复加半嵗周者缩厯本数是以夏至度起筭今加入半嵗周又加入天正箕宿度是变而加盈厯亦以天正冬至箕宿初度起筭也所得定积度即是今所躔宿度与箕宿初度相距逺近之数也
  推食甚日躔黄道宿次度法
  置所推黄道定积度无论盈缩厯皆以黄道各宿次积度钤挨及减之余为食甚日躔黄道某宿次度分也按所推黄道定积度无问盈缩皆是今食甚躔度前距箕宿初度之积数也然尚未知其为黄道何宿度也故以黄道各宿积度钤取其相挨及者减之其减去者是今积度内已满其宿之度日躔已过此宿断为前宿也其不及减而余者则是前宿筭外所余度分也是日躔正在此宿中未过故其积度亦未满当即以所减筭外之度分断为食甚日躔某宿防度防分也假如食甚定积十度则以箕宿积度九度五九减之余○度四十一分为箕宿筭外余数断为食甚日躔黄道斗宿初度四十一分也余仿此















  按黄道积度钤皆自箕初度积至其宿垜积之数也假如日躔斗二十三度四七加入箕宿九度五九则已共积得三十三度○六也又如日躔牛六度九十分加入斗二十三度四七又加入箕九度五九共积得三十九度九六也余仿此
  又按凡言钤者皆豫将所筭之数并其已前之数朶积而成以便临筭取用意同立成也虽然黄道不可以立钤筭者当知黄道度之所由生则可以断其是非矣葢黄道积度生于其宿黄道度各宿黄道度皆生于赤道赤道三百六十五度二五七五而其各宿度数不同者则以二至二分所躔不同也黄道近二至则其度视赤道损而少黄道近二分则其度视赤道益而多葢赤道平分天腹适当二极之中所纪之度故终古而不易黄道不然其冬至则近南极在赤道外二十三度九十分其夏至则近北极在赤道内亦二十三度九十分其自南而北自赤道外而入于其内也则交于春分之宿其自北而南自赤道内而出于其外也则交于秋分之宿交则斜所占分数多此处占多则二至之黄道所占数少理势然也黄道之损益既系于分至分至既以嵗而差黄道积度是必毎嵗不同古人则既言之矣此所载者犹据授时厯经所测黄道之度乃至元辛巳一年之数也上考下求数十年间则皆有所不合况距今三百八十余筭积差尤多安得海制此钤以尽古今之无穷乎今仍以授时厯经黄赤道差法求得天启辛酉年黄道积度如左
  依授时厯经求得天启辛酉年黄道积度
  天正冬至赤道箕宿四度九○
  赤道四象积度











  右夏至后一象之度
<子部,天文算法类,推步之属,大统历志,卷七>
<子部,天文算法类,推步之属,大统历志,卷七>
<子部,天文算法类,推步之属,大统历志,卷七>





  已上度钤俱据辛酉嵗差所在歩定俟嵗差移一度时再改歩之又按厯经有増周天加嵗差法因前所推俱依通轨故仍之







  大统厯志卷七
  钦定四库全书
  大统厯志卷八
  宣城梅文鼎撰
  月食通轨
  録各有食之望下等数
  经望全分   盈缩厯全分  盈缩差全分迟疾厯全分  迟疾限数   迟疾差全分加减差全分  定望全分【某甲子将本日日出分推在夘时何刻望在何刻已下者退一日也○按説见定朔望条夘时者举例言其实即以日出分如发敛条求之便得某时刻又按其定望退一日法只据其小余在日出分已下者断之并不必求时刻也】
  交泛全分   定入迟疾厯  定入迟疾限【此限与前同者便不必书出损益分并行度○按其实此处损益分不言何用似总不必书出】
  定限行度   晨分【月出之时刻也先于复圆者有带食】
  日出分    日入分    昏分【月出之时刻也复于初亏有帯食○按载晨昏分者所以定更防也其带食分只用日出入分不用晨昏葢晨刻日未出月则犹见昏前日已入月则已见也○注误】
  天正赤道度  天正黄道度  交定度【以上诸法皆与日食同】
  推邜酉前后分法
  视定望小余如在二千五百分已下者就为邜前分也如在已上者去减半日周五千分余为邜后分也又如在七千五百分已下者内减去五千分就为酉前分也如在已上者去减一万分余为酉后分也【已上已下皆指定望小余而言】
  按凡邜酉前后分皆据子午言之邜前分是距子正后之分也故即以小余在夘前者定之邜后分是距午正前之分也故以小余减半日周其余则是自午正逆数以前距数也酉前分是距午正后之分也故以半日周减小余其减不尽者则是自午正顺数以后距数也酉后分是距子正前之分也故以小余减日周其余则是自子正逆数以前距数也
  推时差分法
  置日周一万内减去邜前邜后分或酉前后分【满千分者命为十分满百分者命为单分】得为时差分也
  推食甚定分法
  置所推时差分加入定望小余共得为食甚定分也按气刻时三差皆起于唐长庆中宣明厯于日食用之月食则皆不用后之诸厯或有用月食时差者其数大约与日食相仿皆于近邜酉则差稍多近子午则差渐少其以之定食甚分则皆子前减子后加以加减其定望小余而得也所异者朔食时差多望食时差少耳今依通轨所载推之则近邜酉者差反少近子午者差反多又不问子前子后皆以加定望小余而无减法种种皆与厯经相反则何如不用之为得乎且日食何以有时差以月之掩日去日尚逺也日光尚在但不见耳据所不见而言之故以时而差若月食则不然闇虚者日气所冲食则与月相着譬如呵气着镜光体尽亏一如晦朔安得有左右视之差乎此唐宋诸厯所以多不用也即曰用之所差不过九十余分然亦不至反其所用如此也窃依元史所载月食时差法定之如左