- 首页
- 子藏
- 算法
- 历算全书
历算全书
论高行周天
问最高有行能周于天乎抑只在二至前后数十度中东行而复西转乎曰以理徴之亦可有周天之行也曰然则何以不徴诸实测曰无可据也厯法西传曰古西士去今一千八百年以三角形测日轨记最高在申宫五度三十五分今以年计之当在汉文帝七年戊辰【自汉文帝戊辰顺数至厯元戊辰积一千八百算外】此时西厯尚在权舆越三百余年至多禄某而诸法渐备然则所谓古西士之测算或非精率然而西史之所据止此矣又况自此而逆溯于前将益荒远而高行之周天以二万余年为率亦何从而得其起算之端乎是故以实测而知其最高之有移动者只在此千数百年之内其度之东移者亦只在二至前后一宫之间若其周天则但以理断而已曰以理断其周天亦有説欤曰最高之法非特太阳有之而月五星皆然其加减平行之度者亦中西两家所同也故中厯太阳五星皆有盈缩太隂则有迟疾在西法则皆曰高卑视差而已然则月孛者太隂最高之度也而月孛既有周天之度矣太阳之最高何独不然故曰以理徴之最高得有周天之行也
论小轮
问以最高疏盈缩其义已足何以又立小轮曰小轮即高卑也但言高卑则当为不同心之天以居日月小轮之法则日月本天皆与地同心特其本天之周又有小轮为日月所居是故本天为大轮负小轮之心向东而移日月在小轮之周【即邉也】向西而行大轮移一度日月在小轮上亦行一度大轮满一周小轮亦满一周而盈缩之度与高卑之距皆不谋而合囘囘厯以七政平行为中心行度益谓此也
<子部,天文算法类,推步之属,历算全书,卷三>
凡日月在小轮上半顺动天西行故其右移之度迟于平行为减在小轮下半逆动天而东故其右旋之度速于平行为加【五星同理】若在上下交接之时小轮之度直下不见其行谓之留际留际者不东行不西行无减无加与平行等此小轮上逐度之加减以上下而分者也【用第一图自辛留际过戊最髙至已为上半皆西行自已留过际庚最卑至辛为下半皆东行巳辛两留际循小轮之旁不见其动】
若以入表则分四限小轮上半折半取中为最髙小轮下半折半取中则为最卑最卑最髙之防皆对小轮心与地心而成直线七政居此即与平行同度故为起算之端假如七政起最髙在小轮上西行能减东移之度半象限后西行渐缓所减渐少至一象限而及留际不复更西即无所复减然积减之多反在留际何也七政至此其视度距小轮心之西为大也在古法则为缩初【用第一图自戊至巳一象限其减度最大为己甲小轮半径】既过留际而下转而东行本为加度因前有积减仅足相补其视行仍在平行之西至一象限而及最卑积减之数始能补足而复于平行是为缩末【用第一圗自巳留际至庚最卑一象限】
又如七政至最卑在小轮下东行能加东移之度半象限后东行渐缓所加渐少至一限象而又及留际不复更东亦无所复加然积加之多亦在留际何也七政至此其视度距小轮心之东为大也在古法则为盈初【第一圗自庚最卑至辛留际一象限加度最大为甲辛小轮半径】过留际而上复转西行即为减度然因前有积加仅足相消其视行仍在平行之东至一象限而复及最髙积加之度始能消尽而复于平行是为盈末【第一图自辛防际至戊最髙一象限】此则表中入算加减从小轮之左右而分者也
再论小轮及不同心轮
小轮之用有二其一为迟速之行在古厯则为日五星之盈缩月之迟疾西法则总谓之加减即前所疏者是也其一为髙卑之距即回回厯影径诸差是也凡七政之居小轮最髙其去人逺故其体为之见小焉其在最卑去人则近故其体为之加大焉騐之于日月交食尤为着明【别条详之】是故所谓平行者小轮之心而所谓迟速者小轮之边与其心前后之差【即东西】所谓髙卑者小轮之边与其心上下之距也知有小轮而进退加减之行度逺近大小之视差靡所不贯矣
然则何以又有不同心之算曰不同心之法生于小轮者也试以第二图明之甲乙丙丁圏七政之本天即小轮心所行之道也以子为心即地心也假如小轮心在甲则七政在戊为小轮最髙小轮心自甲东移一象限至乙七政之在小轮亦从戊西行一象限至巳为留际小轮心东移满半周至丙七政在小轮亦行半周至庚为最卑由是小轮心东移满二百七十度至丁七政亦行小轮二百七十度至留际辛小轮心东移满一周复至甲七政行小轮上亦行满一周复至最髙戊若以小轮上七政所行之戊巳庚辛诸聫之即成大圏此圏不以地心为心而别有其心故曰不同心圈也如图地心在子不同心圈之心在丑丑子两心之差与小轮之半径等故可以小轮立算者亦可以不同心立算而行度之加减与视径之大小亦皆得数相符也
论小轮不同心轮孰为本法
问二者之算悉符果孰为本法曰晶宇寥廓天载无垠吾不能飞形御气翺歩乎日月之表小轮之在天不知其有焉否耶然而以求朓朒之行则既有其度矣以量髙卑之距则又有其差矣虽谓之有焉可也至不同心之算则小轮实巳该之何也健行之体外实中虚自地以上至于月天大气所空洞无物故各重之天虽有髙卑而髙卑两际只在本天【七政各重之天相去甚逺其间甚厚故可以容小轮而其最髙最卑皆不越本重之内】非别有一不同之心绕地而转也【不同心之天既同动天西运则其心亦将绕地而旋】况七政两心之差各一其率若使其不同之心皆绕地环行亦甚涣而无统矣愚故曰不同心之算生于小轮而小轮实已该之观回回厯但言小轮可知其为本法而地谷于西术最后出其所立诸圗悉仍用小轮为説亦足以徴矣
论小轮不同心轮各有所用
问小轮与不同心轮既异名而同理择用其一不亦可乎曰论相因之理则不同心之算从小轮而生论测算之用则小轮之径亦从不同心而得故推朒朓之度于小轮特亲【小轮心即平行度也从最髙过轮心作线至地心为平行指线剖小轮为二则小轮右半在平行线西为朒左半在平行线东为朓观图易了】而求最髙之行以不同心立算最切然则其理互通其用相辅并存其説亦足以见圜行之无方而且可为参稽之借矣
最髙在天不可以目视不可以噐测惟据朓朒之度以不同心之法测之而得其两心之差是即为小轮之半径于以作圗立算而朓朒之故益复犁然是故不同心者即测小轮之法也
论小轮心之行及小轮上七政之行皆非自动
问小轮心逆动天而右旋日月五星之在小轮也又逆本天而顺动天以左旋何若是其交错欤意者七政各有能动之性而其动也又恒以逆为顺欤今夫鱼溯川而游顺鳞鬐也鸟逆风而翔便羽毛也夫七政之行亦将若是而已矣曰子以小轮心自为一物而不与本天相连乎曰非也小轮心常在本天之周殆相连耳曰七政居小轮之周岂不若小轮心之在本天乎曰然曰然则小轮心在本天七政在小轮体皆相连其非若鱼之川泳鸟之云飞也审矣然则何为而有动移曰小轮心非能自动也小轮之动本天之动也七政亦非自动也七政之动小轮之动也其故何也盖小轮之心既与本天相连必有定处因本天为动天所转与之偕西而不及其速以生退度故小轮心亦有退度焉厯家纪此退度以为平行【回回厯所谓中心行度】故曰小轮之动本天之动也然则小轮心者小轮之枢也枢连于本天不动故轮能动而七政者又相连于小轮之周者也小轮动则七政动矣故曰七政之动小轮之动也七政虽动不离小轮轮心虽移不离本天又恒为周动而有定法岂若游鳞征鸟之于波澜风霄而莫限所届哉
再论小轮上七政之行
问本天移故小轮心移小轮动故七政动是则然矣然何以七政在小轮上西行不与轮心同势岂非七政自有行法欤曰七政之居小轮也有一定之向本天挈小轮心东移而七政在小轮上常向最髙殆其精气有以摄之也故轮心东移一度小轮上七政亦西迁一度以向最髙譬之罗金小轮者其盘也小轮心者置针之处也七政所居则针所指之午位也试为大圆周分三百六十度【以法周天】别为大圏加其上使与大圆同心而可运【以法同心轮】乃置罗金于大圏之正午而依针以定盘则针之午即盘之午【此如小轮在最髙而七政居其顶与最髙同处也】于是运大圏东转使罗金离午而东【此如本天挈小轮而东移也】则盘针之指午者必且西移而向丁向未【因正午所定之盘不复更置则此时之丁之未实为针之午此如小轮从本天东移而七政西迁居小轮之旁以向最髙之方】盘东移一度针亦西移一度盘东移一宫针亦西移一宫盘东行半周至大圆子位则针在盘上亦西移半周而反指盘之子【此时盘之子实针之午此如小轮心行至最髙冲而七政居小轮之底在小轮为最卑而所向者最髙之方也】盘东移三百六十度而复至午针亦西移一周而复其故矣是何也针自向午不以盘之东移而改其度自盘上观之见为西移耳七政之常向最髙何以异是【七政在小轮上常向最髙之方观第二图可见】
论小轮非一
问小轮有防曰小轮以算视行视行非一故小轮亦非一也凢算视行有二法或用不同心轮则惟月五星有小轮而日则否何也以盈缩髙卑即于不同心之轮可得其度故不以小轮加减而小轮之用已蔵其中也或用同心轮负小轮则日有一小轮月五星有两小轮其一是髙卑小轮为日五星之盈缩月之迟疾即不同心之算七政所同也其一是合望小轮在月为倍离【即晦朔望】在五星为嵗轮【即迟防逆伏】皆以距日之逺近而生故太阳独无也若用小均轮则太阳有二小轮其一为平髙卑二为定髙卑而月五星则有三小轮其一二为平髙卑定髙卑与太阳同其三为太隂倍离五星嵗轮与太阳异也凡此皆以齐视行之不齐有不得不然者然小轮之用不同而名亦易相乱【如月离以髙卑轮为自行轮又称本轮又曰古称小轮其定髙卑轮五星称小均轮月离称均轮或称又次轮至于距日而生之轮月离称次轮五星或称次轮或称年嵗轮然亦曰古称小轮】今约以三者别之一曰本轮七政之平髙卑是也一曰均轮七政平髙卑之轮上又有小轮以加减之为定髙卑此两小轮相须为用二而一者也一曰次轮月五星距日有逺近而生异行故曰次轮而五星次轮则直称之嵗轮也
论七政两种视行【七政从天月五星又从日】
问小轮有三又或为二何也曰小轮旧只用二【一本轮一次轮】新法用三【一本轮一均轮一次轮】然而均轮者所以消息乎本轮为本轮防细之用故曰二而一者也是则轮虽有三实则两事而已何谓两曰七政皆从天以生本轮而月五星又从乎日以生次轮天西行故七政之本轮皆从天而西转其行皆向最髙也【日月五星之在本轮俱向本天最髙其本轮心离最髙一度本轮周亦行一度似为所摄】日天东移故月五星之合望次轮皆从日而东运其行皆向日也【月五星离日若干次轮度亦行若干是为日所摄】惟本轮从天于是有最髙卑之加减而其行度必始于最髙【本轮行始于本天最髙而均轮即始于本轮之最高卑故本轮均轮至最髙卑皆无加减为起算之端】惟次轮从日于是有离日之加减而其行度必始于防日【月次轮行始于朔望星次轮始于合伏故月至朔望五星合日冲日皆无次轮加减】是故七政皆以半周天之宿度行缩厯半周天之宿度行盈厯厯宿度三百六十而本轮一周起最髙终最髙也【因最髙有行分故视周天稍赢然大致不变月之迟疾亦然】次轮则月以厯黄道一周而又过之凡三百八十九度竒而行二周起朔望终朔望也五星嵗轮【即次轮】则土以行黄道十二度竒木以三十三度竒火以四百○八度竒金以五百七十五度竒水以一百十四度竒而皆一周起合伏终合伏也治厯者用三小轮以求七政之视行惟此二者故曰两事也【金水二星防日后皆行黄道宿一周又复过之然后再与日防】
论天行迟速之原
问天有重数则在外者周径大而其度亦大故土木之行迟在内者周径小而其度亦小故金水月之行速七政之行势畧同特其度有大小而分迟速耳以是为右旋之徴不亦可乎曰此必七政另为一物以行于本天之上故可以度之大小为迟速也今七政既与天同体而非另为一物则七政之东升西没即其本天之东升西没也且使各天之行各自为政则其性岂无缓急而自外至内舒亟之次如是其有等乎盖惟七政之天虽有重数而总为一天制动之权全在动天故近动天者不得不速近地而逺动天者不得不迟固自然之理势也曰若是则周径大小可勿论矣曰在外者为动天所掣而西行速故其东移之差数迟又以其周径大而分度阔则其差又迟是故恒星六七十年而始差一度近动天也然以周径之大小准之此所差之一度以视月天将以周计矣在内者逺于动天而西行迟故其东移之差速又以其周径小而分度狭则其差又速是故月天一日东移十三四度者近地而逺动天也然以周径计之此所差之十三四度以视日天尚不能成一度矣然则周径之大小但可兼论以考其差而非所以迟速之原也左旋之説可以无疑
论中分较分
问中分较分何也曰较分者是五星在最卑【本轮】时逐度【嵗轮周】次均之增数也凡算次均皆设嵗轮心在本轮最髙而逐度【嵗轮周】定其均数【或视差在轮心东为加西为减以生迟防逆防诸行】列之于表命曰次均再设心在最卑亦逐度定其均数所得必大于最髙法以先所得最髙时逐度之均数【即次均】减之其余为较分若曰此嵗轮上逐度视差在最卑时应多此数也所以者何视差之理逺则见小近则见大嵗轮之在最卑去地为近比在最髙必大故也
然则又何以有中分曰较分者次均之较而中分者又较分之较也使歳轮心常在最髙与最卑则只用次均与较分亦已足矣无如自最髙至最卑中间一百八十度嵗轮皆得逓居则次均之较各异【歳轮心行于本轮离最高而下以渐近地则星在嵗轮周逐度所生之次均必皆渐大于在最高时而心离最高时时不等即次均之所増亦必不等而较分悉变】势不能一一为表故以中分括之其法以本轮之度分为主若嵗轮各度在本轮最卑时较分若干今在本轮他度则较分只应若干也故以最卑之较分命其比例为六十分【即中分之全分】而其余自离最卑一度起各有所减减至最髙而无中分则亦无较分只用次均本数矣是故较分于次均恒为加而以中分求较分则于较分恒为减【表所列较分皆轮心在最卑之数各以中分乗之六十除之变为轮心未至最卑之较分视在最卑皆为小数】其比例为嵗轮心在某度之较分与在最卑之较分若中分与六十分也故曰中分者较分之较也